yy"-2(y") +2y"=0

(outon.) Note: y=0 5000 Subst 0=y' = 1 y" = 0 dy $\begin{array}{c}
0 & \left(\frac{1}{2} \frac{dv}{dy} - 2v + 2 \right) = 0 \\
0 & 0 & 0
\end{array}$ $en|J-1| = en(Dy^2)$ 0 > 0 $U = 1 + Dy^2 = dy$ 2/ en(1-0/-0=1-Dy = dy 1/ my x+ de 8= po crchen (107)

7 (2) - 10 ten (10 x + ct)

Everything you always wanted to know about mechanical oscillators but were afraid to ask

- The first half of MATH10222 is not directly concerned with mechanics.
- However, mechanical systems provide nice illustrations of many of the phenomena that we have discussed (or will discuss) in a more abstract mathematical setting.

I. Newton's law for one-dimensional motion

• In words: "The sum of all forces acting on a particle of mass m is equal to its mass times its acceleration"

• Or, written as an equation:

$$m\frac{d^2x}{dt^2} = F(t)$$

I. Newton's law for one-dimensional motion (cont.)

• Here's an example with multiple forces

• In this case Newton's law becomes:

$$m\frac{d^2x}{dt^2} = F_1(t) + F_2(t) - F_3(t)$$

• Note the direction of the forces!

II. (Linearly) elastic springs

• Observation: When a spring is loaded by a force, F, its length increases by a certain amount, x, say.

• For a linearly elastic spring we have

$$F = c x$$

where c is the "spring constant", a measure of its stiffness.

• Thus c indicates how strongly the spring resists its static extension.

III. (Linear) dampers

• Observation: When a damper is loaded by a force F its length increases at a rate dx/dt:

• For a linear damper we have

$$F = k \; \frac{dx}{dt}$$

where k is the "damping constant", a measure of how strongly the damper resists its dynamic extension.

IV. Putting it all together: "Action = Reaction"

• Here is a mass m, attached to a spring of stiffness c, and loaded by a force, $F_{external}$.

- What is the equation of motion for the mass?
- Write down Newton's law for the mass.
- \Longrightarrow What forces act on the mass?

IV. Putting it all together (cont.)

• "Action = Reaction": The spring pulls the mass and mass pulls the spring (in the opposite direction, obviously!):

• Thus Newton's law states

$$m\frac{d^2x}{dt^2} = F_{external} - F_{spring},$$

or, using what we've just learned about linear springs:

$$m\frac{d^2x}{dt^2} = F_{external} - cx.$$

IV. Putting it all together (cont.)

• Rewrite to the standard form of a second-order ODE for x(t):

$$m\frac{d^2x}{dt^2} + cx = F_{external}.$$

Exercise: Try it for yourself

• Here is a mass m, attached to a spring of stiffness c, and a damper (damping constant k), loaded by a force $F_{external}$.

• Show that the equation of motion for the mass is

$$m\frac{d^2x}{dt^2} + k\frac{dx}{dt} + cx = F_{external}$$

P mdx = p K(F) & Espring Fdo m dt = Fexternal Spring - Fdamp

CX(4) 12 dt mdx+rdx+cx=fexamolf)

Rewrite in standard form: 4 X+28x+wx=f(+) 5= 2m > 0 $\omega^2 = \frac{c}{m} > 0$ f(x) = fexternol (+) $TC: \times (t=0) = X_0 \text{ initial position}$ JX (t=0 = 1/3 initial velocity The unforced case: f(t) = 0 (Eigenfrequencies) X+2dX+coX = 0 12=-0±10-002

Four cases: Drurely damped motion: RE (-2-12,-02)+ RH = HS (-2-12,-02)+ both 212 ore negative: without ony oscillation 2) Critically damped motion: £ = w tepeofed roots: 212 = -d XIA=He-gf+BF6-gf Ain wat to out at most one overshoot dependint on ICs.

3 Damped oscillations $\lambda_{12} = -\delta \pm i \sqrt{\omega^2 - \delta^2}$ X(x) = e - dt (A cos (Twi-or it) + B 5in ([w²-5] damped oscillation with frequency with whose amplitude decays ~ e-dt to is the timescale over which the oscillation decays. Qundamped oscillation: J=0 >12= tiw XItI = A cos(wt) + B Sin(wt) Periodica undamped ossi'llations with Frequency wo

Figure 1: Illustration of a purely damped motion. The mass approaches its equilibrium position x=0 monotonically.

Figure 2: Illustration of critically damped motions. The mass approaches its equilibrium position, x=0, with at most one "overshoot".

Figure 3: Illustration of a damped oscillation. The mass oscillates about its equilibrium position x=0 and the amplitude of the oscillations decays exponentially.

Figure 4: Illustration of an undamped oscillation. The mass performs harmonic oscillations about its equilibrium position x=0.

Periodic Forcing & resonance X+25x+wx= f(+) Of particular interest: periodic forcing P(+) = f sin (2+) or f cos(2+) Can do both cases by considering PIH=peist then extract real part of bort tor sintsti of imat. X+25x+wx=feist

Ansotz for porticular John: Xp=Xeist into ODE Zeist (-52 + 28 is2+ w2) = 1 eine $X = \frac{f}{(\omega^2 - \Omega^2) + i(2J\Omega)}$ is complex! X = X real + i X imag = 1 X / e polar Form eb = olt (x)

of most interest is 1X1= f (w2-r2)+ (25r)27 This is the emplitude of the oscillation in response to the forcing of magnitude