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Everything you always wanted to
know about mechanical oscillators but
were afraid to ask

e The first half of MATH10222 is not directly con-
cerned with mechanics.

e However, mechanical systems provide nice illustra-
tions of many of the phenomena that we have dis-
cussed (or will discuss) in a more abstract mathe-
matical setting.

I. Newton’s law for one-dimensional
motion

e In words: “The sum of all forces acting on a par-
ticle of mass m is equal to its mass times its ac-
celeration”

-

x(t)

e Or, written as an equation:

d’x



I. Newton’s law for one-dimensional
motion (cont.)

e Here'’s an example with multiple forces

m

F(t

=

o=
E (1)
| =
x(t)
e In this case Newton’'s law becomes:
dx
m s = Filt) + Fyft) - Fy(t)

e Note the direction of the forces!



II. (Linearly) elastic springs

e Observation: When a spring is loaded by a force, F,
its length increases by a certain amount, z, say.

S S . S
undeformed/ stretched/
unloaded loaded

e For a linearly elastic spring we have
F=cz

where ¢ is the “spring constant”, a measure of its
stiffness.

 Thus c indicates how strongly the spring resists its
stalic extension.



ITI. (Linear) dampers

e Observation: When a damper is loaded by a force F
its length increases at a rate dz /dt:

i YO

at rest/ extending/
unloaded loaded

e For a linear damper we have

dx
F=k—
dt

where k is the “damping constant” | a measure of how
strongly the damper resists its dynamic extension.



IV. Putting it all together:
“Action = Reaction”

e Here is a mass m, attached to a spring of stiffness ¢,
and loaded by a force, F. icrnal-

T F:external

m | T x(1)

P S S S
undeformed/ stretched/
unloaded loaded

e What is the equation of motion for the mass?
e Write down Newton’s law for the mass.

e —> What forces act on the mass?



IV. Putting it all together (cont.)

e “Action = Reaction”: The spring pulls the mass and
mass pulls the spring (in the opposite direction, ob-

viously!):
T Fe‘arrenm!
q
l E&‘prmg %
~. equal and
~ opposite
T F;external g PP
m T F;prmg

ta

EL S S

undeformed/ stretched/ stretched/
unloaded loaded loaded

e Thus Newton's law states
d’z
m'a_tg S Fspring:

or, using what we've just learned about linear springs:
d*z

m.—_—

dt?

= Fe:rternal — CT.



IV. Putting it all together (cont.)

e Rewrite to the standard form of a second-order ODE
for x(¢):

d?
mw +cT = Fe:l;ternal-
T F:?xternal
- Ixm
P P
undeformed/ stretched/

unloaded loaded



Exercise: Try it for yourself

e Here is a mass m, attached to a spring of stiffness
¢, and a damper (damping constant k), loaded by a
force Fe:r:ternai’

external

" ‘ T (1)
RRREE bl i
==
A P
undeformed/ stretched/
at rest/ extending/
unloaded loaded

e Show that the equation of motion for the mass is

d’x  dx
mw + ka‘z +cr = Fez:t-:-'rnal
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Figure 1: Illustration of a purely damped motion. The mass approaches its equilibrium

position x = 0 monotonically.
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Figure 2: Hlustration of critically damped motions. The mass approaches its equilibrium
position, z = 0, with at most one “overshoot”.



Figure 3: Illustration of a damped oscillation. The mass oscillates about its equilibrium
position z = 0 and the amplitude of the oscillations decays exponentially.



e

o Y

p——

Yt =

§g

g E

on

PR

non +

5 X X
d ]
[ :

| ]

| |

Figure 4: Illustration of an undamped oscillation. The mass performs harmonic oscilla-
tions about its equilibrium position z = 0.
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