Some theory for *linear* 2nd order ODEs

Existence and Uniqueness

Consider the *linear* second-order ODE

\[y'' + p(x) y' + q(x) y = r(x), \]

subject to the initial conditions

\[y(X) = Y, \quad y'(X) = Z, \]

where the constants \(X, Y \) and \(Z \), and the functions \(p(x) \), \(q(x) \) and \(r(x) \) are given.

Theorem

If the functions \(p(x) \), \(q(x) \) and \(r(x) \) are continuous functions of \(x \) in an interval \(I \), and if \(X \in I \) then there **exists exactly one** solution to the initial value problem defined by (1) and (2) in the entire interval \(I \).

Notes:

- This is the promised extension of the statement for first-order problems. The extension to even higher-order linear ODEs should be obvious...

- If the functions \(p(x) \), \(q(x) \) and \(r(x) \) are “well-behaved” (no jumps, singularities, etc.), the theorem guarantees the existence of a unique solution for \(x \in \mathbb{R} \).

- However, the statement still only applies to initial value problems!
The homogeneous ODE & superposition of its solutions

If we set \(r(x) = 0 \) in the \textit{inhomogeneous} ODE
\[
y'' + p(x) y' + q(x) y = r(x), \quad (I)
\]
we obtain the corresponding \textit{homogeneous} ODE
\[
y'' + p(x) y' + q(x) y = 0. \quad (H)
\]

A trivial (?) but useful observation

If \(y_1(x) \) and \(y_2(x) \) are two solutions of \((H)\) then the linear combination
\[
y_3(x) = A y_1(x) + B y_2(x)
\]
is also a solution, for any values of the constants \(A \) and \(B \).

Linear independence

To see why this is a useful observation, we need to define the concept of linear independence: Two nonzero functions \(y_1(x) \) and \(y_2(x) \) are linearly independent if
\[
A y_1(x) + B y_2(x) = 0 \quad \forall x \quad \iff \quad A \equiv B \equiv 0
\]
(...just as in linear algebra...).

Examples:

- \(y_1(x) = x \) and \(y_2(x) = 3 x^2 \) are linearly independent.
- \(y_1(x) = x \) and \(y_2(x) = 3 x \) are linearly dependent – they’re just multiples of each other.
Fundamental solutions of the homogeneous ODE

Theorem

Any solution of the homogeneous ODE

\[y'' + p(x) y' + q(x) y = 0. \] \hspace{1cm} (H)

can be written as a linear combination of any two non-zero, linearly independent solutions, \(y_1(x) \) and \(y_2(x) \), say:

\[y(x) = A y_1(x) + B y_2(x). \]

The two non-zero, linearly independent solutions \(\{ y_1(x), y_2(x) \} \) are called “fundamental solutions” of the homogeneous ODE (H).

Notes:

- The set of fundamental solutions is not unique!
The general solution of the inhomogeneous ODE

Theorem

The general solution of the inhomogeneous ODE

\[y'' + p(x) y' + q(x) y = r(x) \] \hspace{1cm} (I)

can be written as

\[y(x) = y_p(x) + A y_1(x) + B y_2(x), \]

where:

- \(A \) and \(B \) are arbitrary constants.
- \(y_p(x) \) is any particular solution of the inhomogeneous ODE.
- \(y_1(x) \) and \(y_2(x) \) are fundamental solutions of the corresponding homogeneous ODE.

Notes:

- Note the similarities between the structure of the solution of the linear ODE and the structure of the solution of the linear (algebraic) equation \(Ax = b \). This is not accidental! There are deep connections between the two fields – matrices and the homogeneous part of a linear ODE are both “linear operators”.
- The values of the constants \(A \) and \(B \) are determined by the boundary or initial conditions.