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Some theory for linear 2nd order ODEs
Existence and Uniqueness

Consider the linear second-order ODE

y' +p(e)y +g(z)y = r(z), (1)
subject to the initial conditions
y(X) =Y, y(X)=2 (2)
where the constants X, Y and Z, and the functions p(z),

g(z) and r(z) are given.

Theorem

tions of z in an interval I, and if X € I then there exists
exactly one solution to the initial value problem defined
by (1) and (2) in the entire interval 7.

|
i If the functions p(x), ¢(x) and r(x) are continuous func-

L

Notes:

e This is the promised extension of the statement for first-order
problems. The extension to even higher-order linear ODEs
should be obvious...

o If the functions p(z), ¢(z) and r(z) are “well-behaved” (no
jumps, singularities, etc.), the thecorem guarantees the exis-
tence of a unique solution for z € R.

e However, the statement still only applies to initial value prob-
lems!
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The homogeneous ODE & superposition of its solutions

If we set r(z) = 0 in the inhomogeneous ODE

y" +p(z)y + g(z)y = r(z), (1)
we obtain the corresponding homogeneous ODE
y' +p(z)y +q(z)y =0. (H)

A trivial (?7) but useful observation

If y1(z) and yo(z) are two solutions of (H) then the linear combi-
nation

y3(z) = Ayi(z) + Bya(z)
is also a solution, for any values of the constants A and B.

Linear independence

To see why this is a useful observation, we need to define the
concept of linear independence: Two nonzero functions y;(z) and
y2(x) are linearly independent, if

Ay(z)+ Bys(z) =0 Vz < A=B=0

(...just as in linear algebra...).

Examples:
e y1(z) = x and ys(z) = 3x? are linearly independent.

e yi1(x) = x and ye(z) = 3z are linearly dependent - they’re
just multiples of each other.

&
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Fundamental solutions of the homogeneous ODE

Theorem

Any solution of the homogeneous ODE
' +p(@)y +glz)y = 0. (H)

can be written as a linear combination of any two 1ON-Zero,
linearly independent solutions, y1(z) and (), say:

y(z) = Ayp(z) + Byp(z).

The two non-zero, linearly independent solutions {yi(z), yo(z)}
are called “fundamental solutions” of the homogeneous ODE (H).

Notes:

e The set of fundamental solutions is not unique!
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The general solution of the inhomogeneous ODE

Theorem

The general solution of the inhomogeneous ODE
y' +p(2)y +a(z)y =r(z) (I)
can be written as
y(x) = yplz) + Ap() + B ya(),
where:

e A and B are arbitrary constants.

e y,(x) is any particular solution of the inhomogeneous

ODE.

e y1(x) and yo(x) are fundamental solutions of the cor-
responding homogeneous ODE. ‘

Notes:

e Note the similarities between the structure of the solution of
the linear ODE and the structure of the solution of the linear
(algebraic) equation Ax = b. This is not accidental!l There
are deep connections between the two fields — matrices and the
homogeneous part of a linear ODE are both “linear operators”.

e The values of the constants A and B are determined by the
boundary or initial conditions.
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