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MATH10222: SOLUTIONS 1 IV

1. Inhomogeneous linear second-order ODEs with constant coefficients

(a) Exploiting linearity

i.
ÿ + 3 ẏ + 2 y = 4 e2 t (I)

• Corresponding homogeneous equation:

ÿ + 3 ẏ + 2 y = 0 (H)

• Characteristic equation:

λ2 + 3 λ+ 2 = 0 =⇒ λ1,2 = −1,−2 distinct, real roots.

• So the general solution of (H) is

yH(t) = C e−t +D e−2 t.

• Particular solution: In (I) r(t) = 4 e2 t, so try yP = Ae2 t, ẏP = 2Ae2 t,
ÿP = 4Ae2 t. Substitute and solve for A (e2 t will cancel through):

4A+ 3 (2A) + 2A = 4 ⇐⇒ A =
1

3
.

So

yP =
1

3
e2 t.

• Hence the general solution of (I) is

y = yH + yP = C e−t +D e−2 t +
1

3
e2 t.

for arbitrary constants C and D.

ii.
ÿ + 3 ẏ + 2 y = 7 (I)

• The homogeneous equation is the same as in the previous example, so

yH(t) = C e−t +D e−2 t

as before.

• Now we need a particular solution for the constant RHS r(t) = 7. Try
yP = A, substitute into the ODE, and solve for A.

A =
7

2
.
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• Hence the general solution is

y = yH + yP = C e−t +D e−2 t +
7

2
.

iii.
ÿ + 3 ẏ + 2 y = 4 e2 t + 7.

The homogeneous equation is the same, yet again, and the RHS is the sum
of the two RHSs considered in the previous examples. Because the ODE
is linear, we can simply add the the particular solutions obtained in these
cases. Therefore, the general solution is given by

y = C e−t +D e−2 t +
7

2
+

1

3
e2 t.

Oh, aren’t linear equations beautiful (or boring?).

(b) Using complex variables for trigonometric RHSs

We’re looking for the general solutions of

ÿ + 2 ẏ + 2 y =

(
10 cos t
10 sin t

)
(I)

• First consider the homogeneous equation

ÿ + 2 ẏ + 2 y = 0 (H)

which is the same in both cases.

• Characteristic equation:

λ2 + 2 λ+ 2 = 0 =⇒ λ1,2 = −1 ± i,

i.e. complex conjugate roots.

• Thus, for both cases the general solution of the homogeneous ODE is given
by

yH(t) = e−t (C cos t +D sin t).

• To obtain the particular solution for both cases simultaneously, we exploit
the fact that cos t = Re(eit) and sin t = Im(eit) and determine a (complex)
particular solution for

ÿ + 2 ẏ + 2 y = 10 eit, (C)

and then extract the real and imaginary parts.

• Given that r(t) = eit, we try yp = Aeit, ẏP = i A ei t, ÿP = −Aei t.

• Substitute into (C) and cancel the common factor ei t:

−A + 2 (i A) + 2A = 10

A (1 + 2 i) = 10

A = 2 (1− 2 i)
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• So
yP = 2 (1− 2 i) ei t = (2− 4 i) (cos t+ i sin t).

• Now extract the real and imaginary parts:

Re(yP ) = 2 cos t+ 4 sin t and Im(yP ) = −4 cos t + 2 sin t.

• So the general solution of (I) is

y = e−t (C cos t+D sin t) +

(
2 cos t+ 4 sin t
−4 cos t+ 2 sin t

)
(I)

(c) Degenerate and non-degenerate cases for RHSs of exponential form

i.
ÿ + 3 ẏ + 2 y = 2 e−t

• Characteristic equation: λ2 + 3 λ+ 2 = 0 i.e. λ1,2 = −1, −2, so

yH(t) = C e−t +D e−2 t.

• The RHS r(t) = 2 e−t, has the same form as one of the fundamental
solutions, so an ansatz of the form yp ∼ e−t won’t work (Try it!). Use

yP = A t e−t, ẏP = (A− A t) e−t, ÿP = (−2A+ A t) e−t.

instead.

• Substitute into the ODE and cancel the common factor e−t:

−2A+ A t+ 3A− 3A t+ 2A t = 2

t (A− 3A+ 2A) + A = 2 so A = 2.

• The general solution is

y = C e−t +D e−2 t + 2 t e−t

for arbitrary constants C and D.

ii.
ÿ + 4 ẏ + 4 y = e−2 t

• Characteristic equation: λ2 + 4 λ+ 4 = 0 i.e. λ1,2 = −2, so

yH(t) = (C +D t) e−2 t.

• The RHS r(t) = e−2 t, has the same form as the first fundamental
solution and te−2 t has the same form as the second one, so try

yP = A t2 e−2 t, ẏP = (2A t−2A t2) e−2 t, ÿP = (−8A t+4A t2+2A) e−2 t

instead.
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• Substitute into the ODE and cancel the common factor e−2 t:

−8A t+ 4A t2 + 2A+ 8A t− 8A t2 + 4A t2 = 1

t2 (4A− 8A+ 4A) + t (−8A+ 8A) + 2A = 1

A =
1

2
.

• The general solution is

y = (C +D t+
t2

2
) e−2 t.

for arbitrary constants C and D.

iii.
ÿ + 2 ẏ + 2 y = 5 cosh t

• The homogeneous equation, ÿ+2 ẏ+2 y = 0 is the same as in part 1b,
so

yH(t) = e−t (C cos t+D sin t),

as before.

• Given the RHS r(t) = 5 cosh t we’d like to try an ansatz of the form
yp(t) = A cosh t. When differentiated, this will also produce terms that
are proportional to sinh t. To balance these, we try yp(t) = A cosh t+
B sinh t:

yp = A cosh t+B sinh t,

ẏP = A sinh t+B cosh t,

ÿP = A cosh t +B sinh t = yp.

• Substitute into the ODE:

3
(
A cosh t+B sinh t

)
+ 2

(
A sinh t+B cosh t

)
= 5 cosh t.

cosh t
(
3A+ 2B − 5

)
+ sinh t

(
3B + 2A

)
= 0

• So 3A+ 2B − 5 = 0 and 3B + 2A = 0 =⇒ A = 3, B = −2.

• The general solution is therefore

y = e−t (C cos t +D sin t) + 3 cosh t− 2 sinh t

for arbitrary constants C and D.

iv.
ÿ + 3 ẏ + 2 y = 2 cosh t

• The homogeneous equation, ÿ + 3 ẏ + 2 y = 0 is the same as in part
1(c)i, so

yH(t) = C e−t +D e−2 t

as before.
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• As in the previous problem, the RHS r(t) = 2 cosh t suggests trying a
particular solution that contains sinh and cosh terms. However, r(t) =
2 cosh t contains one of the two fundamental solutions as 2 cosh t =
et + e−t. Therefore we must look for a particular integral of the form

yP = A t e−t+B et, ẏP = e−t (A−A t)+B et, ÿP = e−t (−2A+A t)+B et.

• Substitute into the ODE:

e−t (−2A+ A t+ 3A− 3A t+ 2A t) + et (B + 3B + 2B) = et + e−t

Ae−t + 6B et = et + e−t

A = 1, B =
1

6
.

• The general solution is therefore

y = C e−t +D e−2 t + t e−t +
1

6
et

for arbitrary constants C and D.

(d) Degenerate and non-degenerate cases for polynomial RHSs

i.
ÿ + 3 ẏ + 2 y = 1 + t2

• The homogeneous ODE is the same as in question 1(a)i so

yH(t) = D e−t + E e−2 t.

• Particular solution: The RHS r(t) = 1 + t2 suggests using a complete
second-order polynomial as an ansatz for yP :

yP = A+B t+ C t2

(The term that’s linear in t is needed to balance the term that arises
from the differentiation of the t2-term. Try omitting it if you don’t
believe it!)

ẏP = B + 2C t,

ÿP = 2C.

• Insert into the ODE:

2C + 3
(
B + 2C t

)
+ 2

(
A+B t+ C t2

)
= 1 + t2.

• Collect powers of t:

(
2C + 3B + 2A− 1

)
+
(
6C + 2B

)
t +

(
2C − 1

)
t2 = 0.

• Setting the coefficients to zero yields:

C = 1/2, B = −3/2, A = 9/4.
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• Hence the general solution is

y = yP + yH = D e−t + E e−2 t +
9

4
−

3

2
t+

1

2
t2.

ii.
ÿ + 2 ẏ = 1 + t2

• The homogeneous solution is

yH(t) = D + E e−2 t.

• Particular solution: As in the previous case, the RHS r(t) = 1 + t2

suggests using a complete second-order polynomial as an ansatz for
the particular solution:

ŷP = A+B t+ C t2.

However, here this isn’t going to work (try it!) because the constant
term is a solution of the homogeneous ODE =⇒ multiply the ansatz
ŷP by tm where m is the smallest positive integer for which none of the
terms in tm ŷP are solutions of the homogeneous ODE. In our example,
m = 1 does the trick, so we choose

yP = A t+B t2 + C t3,

ẏP = A + 2B t + 3C t2,

ÿP = 2B + 6C t.

• Insert into the ODE:

(
2B + 6C t

)
+ 2

(
A + 2B t+ 3C t2

)
= 1 + t2.

• Collect powers of t:

(
2B + 2A− 1

)
+
(
6C + 4B

)
t +

(
6C − 1

)
t2 = 0.

• Setting the coefficients to zero yields:

C = 1/6, B = −1/4, A = 3/4.

• Hence the general solution is

y = yP + yH = D + E e−2 t +
3

4
t−

1

4
t2 +

1

6
t3.

iii.
ÿ = 1 + t2

• The homogeneous solution is

yH(t) = D + E t.
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• Particular solution: Here, using a complete second-order polynomial
as an ansatz for yP won’t work because the constant and linear terms
are solutions of the homogeneous equation. We have to multiply the
naive ansatz y

[naive]
P = A + B t + C t2 by t2 to ensure that none of its

terms are solutions of the homogeneous ODE:

yP = A t2 +B t3 + C t4,

ẏP = 2A t+ 3B t2 + 4C t3,

ÿP = 2A+ 6B t + 12C t2.

• Insert into the ODE:
(
2A+ 6B t+ 12C t2

)
= 1 + t2

• Collect powers of t:
(
2A− 1

)
+
(
6B) t+

(
12C − 1

)
t2 = 0.

• Setting the coefficients to zero yields:

C = 1/12, B = 0, A = 1/2.

• Hence the general solution is

y = yP + yH = D + E t+
1

2
t2 +

1

12
t4.

[Of course, we could have found the solution directly by integrating the
ODE twice!]

2. Linear ODEs with non-constant coefficients: Euler’s ODE

(a) Given that your lecturer has kindly provided you with an ansatz, it is quite
legitimate for you to insert it into the ODE and stare at it for a while. After
a while you should suddenly notice (with immense delight!) that a common
factor tn can be extracted from all terms so that, just as in the case of an eλt-
ansatz for a constant-coefficient ODE, we are left with an (algebraic) equation
that determines the values of n:

Substitute y = tn into a t2 ÿ(t) + b t ẏ(t) + c y(t) = 0 :

a t2 n (n− 1) tn−2 + b t n tn−1 + c tn = 0,

a n (n− 1) + b n + c = 0

a n2 + (b− a)n + c = 0.

This is another “characteristic polynomial”.

Is there any theory behind this? Yes, and it’s useful to know about it, so keep
reading. We start with the seemingly trivial observation that the ODE has to
be satisfied for all values of the independent variable t ∈ I:

a t2 ÿ(t) + b t ẏ(t) + c y(t) = 0 ∀x ∈ I.

This requires the sum of the three terms, a t2 ÿ(t), b t ẏ(t) and c y(t) to vanish
for all values of t ∈ I. There are two particularly “easy” ways to achieve this:
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• We make the three terms vanish individually. If c 6= 0, this requires y ≡ 0
and therefore only yields the trivial solution. Not a particularly clever idea
then...

• We ensure that the three terms have the same functional dependence on

the independent variable so that:

a t2 ÿ(t)︸ ︷︷ ︸
AF(t)

+b t ẏ(t)︸ ︷︷ ︸
BF(t)

+c y(t)︸︷︷︸
CF(t)

= 0, (1)

where A, B and C are constants. If (!) this can be achieved, we can
re-write the ODE as

F(t)
(
aA+ bB + c C

)
= 0,

and obtain the coefficients from the algebraic condition

aA+ bB + c C = 0.

Under what conditions will this work? The middle term in (1) requires
that

t
dy

dt
= BF(t), (2)

while the last term provides an expression for dy/dt:

y(t) = C F(t) =⇒
dy

dt
= C

dF(t)

dt
. (3)

Combining (2) and (3) shows that

t
dF(t)

dt
= nF(t) (4)

where n = B/C. Equation (4) can be solved by separation of variables
which shows that F(t) must have the form

F(t) = A tn.

The same result is obtained by equating the first and second terms in (1).
Nice, innit?

(b) Let’s try this for
t2 ÿ + 2 t ẏ − 2 y = 0.

• Inserting y ∼ tn yields

t2 n(n− 1) tn−2 + 2 t n tn−1 − 2 tn = 0 ⇐⇒ tn (n2 + n− 2) = 0.

Now t 6= 0 in general, so the possible values of n are n = 1 and n = −2,
giving two solutions

y1 = t and y2 =
1

t2
.
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The two solutions are nonzero and linearly independent therefore they
constitute a set of fundamental solutions for the linear homogeneous ODE.
The general solution is therefore

y = A t+
B

t2

for any constants A and B.

(c) Using the ansatz y ∼ tn in the ODE

t2 ÿ − t ẏ + y = 0,

yields the characteristic polynomial

n (n− 1)− n + 1 = n2 − 2n+ 1 = (n− 1)2 = 0,

which has the double root n1,2 = 1. Hence we only obtain a single solution
y1(t) = A t.

A second solution may be obtained via the “reduction of order” method, dis-
cussed on the previous example sheet, by posing y2(t) = g(t) y1(t), i.e.

y2 = t g(t),

ẏ2 = t ġ(t) + g(t),

ÿ2 = 2 ġ(t) + t g̈(t).

Substitute into the ODE:

t2
(
2 ġ(t) + t g̈(t)

)
− t

(
t ġ(t) + g(t)

)
+ t g(t) = 0,

t3 g̈(t) + t2 ġ(t) = 0.

This is a first-order ODE for v = ġ :

t v̇(t) + v = 0,

t
dv

dt
+ v = 0.

Separate variables ∫
1

t
dt = −

∫
1

v
dv

ln |t|+D = ln |t|+ ln |C| = ln |Ct| = − ln |v| = ln |1/v|,

v(t) =
1

Ct
=

dg

dt
.

Separate again:
∫

dg = g(t) =

∫
1

Ct
dt =

1

C
ln |t|+D.

The constants of integration are irrelevant and a second, linearly independent
solution is obtained by choosing, C = 1 and D = 0, say, yielding g(t) = ln |t|
and thus

y2(t) = t ln |t|.

So the general solution of the ODE is given by

y(t) = A t+B t ln |t|.
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3. Non-linear ODEs with special properties

(a)
y y′′ = (y′)2.

• This ODE is autonomous so we substitute

dy

dx
= v =⇒

d2y

dx2
=

dv

dx
=

dv

dy

dy

dx
= v

dv

dy
.

• This transforms the ODE into a separable first-order ODE for v(y) :

y v
dv

dy
= v2.

Note: v = 0 =⇒ y(x) = const. is a solution.

y
dv

dy
= v.

Separate: ∫
1

y
dy =

∫
1

v
dv,

ln |y|+ E = ln |y|+ ln |C| = ln |Cy| = ln |v|

v = C y

• Now back-substitute

v =
dy

dx
= C y,

and separate again ∫
1

y
dy =

∫
C dx

ln |y| = C x+D

y = eCx+D = AeCx.

(b)

y′′ =
2x2

(y′)2

subject to
y′(1) = 21/3 and y(1) = 2−2/3.

• The dependent variable, y, does not appear in the ODE =⇒ the ODE
is a first-order ODE for v(x) = dy/dx:

dv

dx
=

2x2

v2
.

Separate: ∫
v2 dv =

∫
2 x2dx,
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1

3
v3 =

2

3
(x3 + C)

v(x) =
(
2 (x3 + C)

)1/3
.

Apply initial condition: y′(1) = v(1) = 21/3 =⇒ C = 0.

v(x) =
dy

dx
= 21/3 x

Separate again ∫
dy = 21/3

∫
x dx

y(x) = 21/3
x2

2
+D =

x2

22/3
+D

Apply initial condition y(1) = 2−2/3: D = 0, so the solution of the initial
value problem is:

y(x) = 2−2/3 x2.


