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MATH10222: SOLUTIONS TO EXAMPLE SHEET1

II

1. Existence, uniqueness and graphical solutions

(a) To apply the existence and uniqueness theorem, rewrite the ODE in its stan-
dard from y′ = f(x, y). The existence and uniqueness theorem guarantees the
existence of a unique solution in the vicinity of the point (X, Y ) if f(x, y) and
∂f(x,y)

∂y
are continuous functions of x and y in the vicinity of (X, Y ).

For our ODE,

f(x, y) =
x− 1

y

and
∂f(x, y)

∂y
= −x− 1

y2
,

therefore the existence of a unique solution in the vicinity of (X, Y ) is guaran-
teed for all {(X, Y ) | Y 6= 0}.
The ODE is nonlinear, therefore the existence and uniqueness theorem only

ensures the existence in the vicinity of (X, Y ), not for all values of x.

(b) Isoclines (lines along which the solution of the ODE has the same slope) are
given by y′ = (x−1)/y = c, a constant. Thus the isocline on which the solution
has slope c is given by yiso = (x−1)/c. These are straight lines passing through
(x, y) = (1, 0) with slope 1/c. Here are a few “obvious” ones:

• y′ = 0 on the vertical line x = 1.

• y′ = ∞ on the horizontal line y = 0, i.e. on the x-axis.

• y′ = 1 on y = x− 1

• y′ = −1 on y = −(x− 1)

Here’s a sketch of these isoclines and the corresponding integral curves:

1Any feedback to: M.Heil@maths.manchester.ac.uk
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There’s a critical point at (x, y) = (1, 0) where the isoclines intersect.

All solution curves appear to approach the asymptotes y = ±(x − 1) as x →
±∞.

(c) The ODE is separable:

y
dy

dx
= x− 1,

∫

y dy =

∫

(x− 1) dx,

1

2
y2 =

1

2
(x− 1)2 + A for any constant A,

y = ±
√

(x− 1)2 + C for any constant C (= 2A).

(d) • As x → ±∞, we have (x− 1)2 ≫ |C| for any (finite) value of the constant
C so the lines y = ±(x− 1) are indeed asymptotes for all solutions.

• For C = 0, we obtain two solutions y = ±(x − 1) – the two asymptotes
that emerge from the critical point.

• If C > 0, the solution curves pass through the line x = 1 at either y =
√
C

or y = −
√
C, corresponding the solutions above or below the critical point.

• If C < 0 the (real) solutions can’t reach x = 1 – the solutions intersects
the x-axis with infinite slope at x = 1 ±

√
−C. These correspond to the

solution to the right and left of the critical point.

(e) Existence and uniqueness was guaranteed, at least locally, if Y 6= 0. The sketch
shows what goes wrong if we apply initial conditions on the x-axis: For each
initial condition of the form y(x = X) = 0, there are two possible solutions –
one with y ≥ 0, the other one with y ≤ 0.

Regarding the existence of solutions: Recall that for nonlinear ODEs the ex-
istence and uniqueness theorem only provides local results: Existence of the
solution close to the initial conditions does not ensure its existence for all val-
ues of x. In our example, consider the family of solutions that cross the y-axis,
i.e. those with initial conditions of the form y(x = 0) = Y . While the solutions
for |Y | > 1 exist for all values of x, those for |Y | < 1 only exist over a limited
range of x-values, up to the point where they intersect the x-axis.

2. Separable ODEs

(a)
dy

dx
=

1√
1 + x2

Separate and integrate

∫

dy = y =

∫

1√
1 + x2

dx+ C = arcsinh x+ C.

This is the general solution. Here’s a plot of the solution for various values of
the constant C.
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The solution curves all have the same shape. Variations in C shift them along
the y-axis.

(b)
dy

dx
=

4 x

(1 + x2)1/3

Separate and integrate, using the substitution z = 1 + x2. This yields

y = 3 (1 + x2)2/3 + C.

Here’s a sketch of the solutions:
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Again, the constant C simply shifts the position of the solution curves.

(c)
dy

dx
=

−2 y

x− 2

Observations: (i) y ≡ 0 is a solution. (ii) If y1(x) is a solution of the ODE
then y2(x) = −y1(x) is a solution, too.

Separate
1

y

dy

dx
= − 2

x− 2
for y 6= 0

(Note that we’ve dealt with the case y = 0 already: It’s also a solution!) and
integrate

∫

1

y
dy = −

∫

2

x− 2
dx.
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ln |y| = −2 ln |x− 2|+ C

for any constant C. Rewrite

ln |y| = ln |x− 2|−2 + ln |K|,

for another constant, K, and combine the logarithms:

ln

∣

∣

∣

∣

y (x− 2)2

K

∣

∣

∣

∣

= 0 only for K 6= 0

so

y =
K

(x− 2)2
for K ∈ R since y ≡ 0 is a solution too!

The arbitrary constant K multiplies the function. If we change K the shape
of the solution changes.
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Note that the solution y ≡ 0 is an asymptote for all solutions as x → ±∞.

(d)
√
1 + x2

dy

dx
= y

Observations: (i) y ≡ 0 is a solution. (ii) If y1(x) is a solution of the ODE
then y2(x) = −y1(x) is a solution, too.

Separate
1

y

dy

dx
=

1√
1 + x2

for y 6= 0,

and integrate
∫

1

y
dy =

∫

dx√
1 + x2

ln |y| = arcsinh x+ C

Rewrite, using the hint,

ln |y| = ln(x+
√
1 + x2) + ln |K| = ln |K (x+

√
1 + x2)|

so
y = K (x+

√
1 + x2) for K ∈ R

since y ≡ 0 is also a solution.

Here is a sketch of the solution
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As in the previous example, the constant of integration changes the shape of
the solution. The solution y ≡ 0 is an asymptote for x → −∞.

3. Initial value problems

(a) We have calculated the general solution of the ODE in question 2a:

y(x) = arcsinh x+ C

Applying the initial condition y(0) = 5 yields 5 = arcsinh 0 + C = C so the
solution of the initial value problem is

y(x) = arcsinh x+ 5.

(b) We have calculated the general solution of the ODE in question 2d:

y = K (x+
√
1 + x2)

Applying the initial condition y(0) = −3 yields −3 = K (0 +
√
1 + 0) = K so

the solution of the initial value problem is

y = −3 (x+
√
1 + x2).

4. First-order ODEs of homogeneous type

(a)

x y
dy

dx
+ x2 + y2 = 0. (1)

Assuming that x 6= 0, y 6= 0, we rewrite this as

dy

dx
= −x

y
− y

x
,

which shows that the equation is a first-order ODE of homogeneous type.

Put y(x) = z(x) x, thus dy
dx

= z + x dz
dx
. The ODE becomes

z + x
dz

dx
= −1

z
− z = −1 + z2

z
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i.e.

x
dz

dx
= −1 + 2 z2

z
.

Separate
z

1 + 2 z2
dz

dx
= −1

x
∫

z

1 + 2 z2
dz = −

∫

1

x
dx

[Use the substitution u = 1 + 2z2]

1

4
ln |1 + 2 z2| = − ln |x|+ C

ln |1 + 2 z2| 14 = − ln |x|+ ln |K| = ln |K/x|

1 + 2 z2 =

(

K

x

)4

2
y2

x2
=

(

K

x

)4

− 1

y = ±x

√

√

√

√

1

2

(

(

K

x

)4

− 1

)

This is the general solution for x 6= 0. Note that for x = 0 the coefficient
multiplying dy/dx in (1) vanishes – this is always a sign of trouble!

(b)

x2 dy

dx
+ y2 − xy = 0

Observation: y ≡ 0 is a solution.

Rewriting the ODE as
dy

dx
=

y

x
− y2

x2

shows that the equation is a first-order ODE of homogeneous type.

Put y(x) = z(x) x, thus dy
dx

= z + x dz
dx
. The ODE becomes

z + x
dz

dx
= z − z2

i.e.

x
dz

dx
= −z2.

Separate,

− 1

z2
dz

dx
=

1

x
1

z
= ln |x|+ C

1

y
=

ln |x|+ C

x
(x 6= 0, y 6= 0)
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y =
x

ln |x|+ C

This is the general solution for x 6= 0, y 6= 0. We know that y ≡ 0 is another
solution. At x = 0 the RHS of the ODE is singular and the solution is not
defined.

5. First-order linear ODEs

(a)

(1− x2)
dy

dx
− x y = 1 (2)

is a linear first-order ODE.

Rearrange into the standard form dy/dx+ p(x) y(x) = q(x):

dy

dx
− x

1− x2
y =

1

1− x2
.

Integrating factor:

I = exp

(
∫

p(x) dx

)

= exp

(
∫ −x

1− x2
dx

)

= exp

(

1

2
ln(1− x2)

)

= (1−x2)1/2.

Multiplying the ODE by the integrating factor transforms it into

d

dx

(

y (1− x2)1/2
)

=
1

(1− x2)1/2
.

[Check this by differentiating out the LHS if you don’t believe it.] Hence,

y (1− x2)1/2 =

∫

1

(1− x2)1/2
dx = arcsin x+ C,

so y =
arcsin x+ C

(1− x2)1/2
.

This is the general solution.

Initial conditions: We are given that y = 0 at x = 0. Substituting these values
into the general solution, we get:

0 =
0 + C

1
=⇒ C = 0.

So the required solution is

y =
arcsin x

(1− x2)1/2
.

This is valid for −1 < x < 1:
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Note that the solution is singular where the term multiplying dy/dx in (2)
vanishes.

(b)
dy

dx
− y

x
= x cosx

is a linear first-order ODE – already in its standard form with p(x) = − 1
x
.

Integrating factor, I = exp(
∫

p(x) dx),

I = exp(− ln x) =
1

x
.

Multiplying the ODE by the integrating factor transforms it into

d

dx

(y

x

)

= cosx.

So,
y

x
= sin x+ C

y = x sin x+ C x.

This is the general solution.

Initial conditions: We are given that y(π) = 0. Substituting these values into
the general solution, we get:

0 = 0 + C π =⇒ C = 0.

So the required solution is
y = x sin x.
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The solution is defined for all values of x.


