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MATH10222: SOLUTIONS TO EXAMPLE SHEET!
I1

1. Existence, uniqueness and graphical solutions

(a) To apply the existence and uniqueness theorem, rewrite the ODE in its stan-
dard from y' = f(x,y). The existence and uniqueness theorem guarantees the
existence of a unique solution in the vicinity of the point (X,Y) if f(z,y) and

%ﬁ/’y) are continuous functions of x and y in the vicinity of (X,Y).
For our ODE,
r—1
fla,y) =
)
and

o v
therefore the existence of a unique solution in the vicinity of (X,Y’) is guaran-

teed for all {(X,Y)|Y # 0}.

The ODE is nonlinear, therefore the existence and uniqueness theorem only
ensures the existence in the vicinity of (X,Y’), not for all values of x.

Y

(b) Isoclines (lines along which the solution of the ODE has the same slope) are
given by v/ = (x—1)/y = ¢, a constant. Thus the isocline on which the solution
has slope c is given by y;5, = (z—1)/c. These are straight lines passing through
(z,y) = (1,0) with slope 1/c. Here are a few “obvious” ones:

e y' =0 on the vertical line x = 1.

e 3’ = oo on the horizontal line y = 0, i.e. on the z-axis.
ey=1lony=ao-1

e y=—1lony=—(x—1)

Here’s a sketch of these isoclines and the corresponding integral curves:

N

! Any feedback to: M.Heil@maths.manchester.ac.uk




https://personalpages.manchester.ac.uk/staff/matthias.heil/Lectures/FirstYearODEs/index.html 2

There’s a critical point at (z,y) = (1,0) where the isoclines intersect.

All solution curves appear to approach the asymptotes y = +(z — 1) as x —
+o0.

(¢) The ODE is separable:

1
Zy? = 5@ —1)2+ A for any constant A,

y==+v(x—1)2+C  for any constant C' (= 2A4).

(d) e Asxz — 400, we have (x — 1)? > |C| for any (finite) value of the constant

C' so the lines y = +(x — 1) are indeed asymptotes for all solutions.

e For C' = 0, we obtain two solutions y = +(x — 1) — the two asymptotes
that emerge from the critical point.

e If C' > 0, the solution curves pass through the line z = 1 at either y = v/C
or y = —v/C, corresponding the solutions above or below the critical point.

o If C' < 0 the (real) solutions can’t reach # = 1 — the solutions intersects
the z-axis with infinite slope at # = 1 & +/—C. These correspond to the
solution to the right and left of the critical point.

(e) Existence and uniqueness was guaranteed, at least locally, if Y # 0. The sketch
shows what goes wrong if we apply initial conditions on the z-axis: For each
initial condition of the form y(z = X) = 0, there are two possible solutions —
one with y > 0, the other one with y < 0.

Regarding the existence of solutions: Recall that for nonlinear ODEs the ex-
istence and uniqueness theorem only provides local results: Existence of the
solution close to the initial conditions does not ensure its existence for all val-
ues of z. In our example, consider the family of solutions that cross the y-axis,
i.e. those with initial conditions of the form y(x = 0) = Y. While the solutions
for |Y'| > 1 exist for all values of z, those for |Y| < 1 only exist over a limited
range of x-values, up to the point where they intersect the x-axis.

2. Separable ODEs

(a)
dy 1

dr V1422

Separate and integrate

1
/dy:y:/ﬁdx+02arcsinhx+0.

This is the general solution. Here’s a plot of the solution for various values of
the constant C'.
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The solution curves all have the same shape. Variations in C shift them along

the y-axis.

dy dx

dr — (1+22)1/3

Separate and integrate, using the substitution z = 1 + 22. This yields
y=3(1+2%)*+C.

Here’s a sketch of the solutions:

Again, the constant C' simply shifts the position of the solution curves.

dy _ =2y
dr  x -2
Observations: (i) y = 0 is a solution. (ii) If y;(x) is a solution of the ODE
then ys(x) = —yi(x) is a solution, too.
Separate
é%z_xiZ for y #0

(Note that we've dealt with the case y = 0 already: It’s also a solution!) and

integrate
1 2
/ —dy = — / dx.
Y T — 2
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Inly|=—-2In|z—-2|+C
for any constant C'. Rewrite
In|y| =In|r — 2|72+ 1n|K|,
for another constant, K, and combine the logarithms:

y(z—2)°
K

In

=0 only for K #0
SO
K
P
The arbitrary constant K multiplies the function. If we change K the shape
of the solution changes.

for K € R since y = 0 is a solution too!

60

40

201

Note that the solution y = 0 is an asymptote for all solutions as x — +o0.

\/1+x2;i—i:y

Observations: (i) y = 0 is a solution. (ii) If y;(x) is a solution of the ODE
then yo(z) = —y; () is a solution, too.

Separate
Ldy 1

yir it ov7l

and integrate
/ 1 / dx
Sdy= | ——
Y V14 2?
In|y| = arcsinhz 4+ C

Rewrite, using the hint,
Iy = In(e 4+ I+ 22) + I || = I |K (2 4+ VT 5 29)

SO
y=K((x++V1+22) for KeR

since y = 0 is also a solution.

Here is a sketch of the solution
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As in the previous example, the constant of integration changes the shape of
the solution. The solution y = 0 is an asymptote for x — —oo.

3. Initial value problems

(a) We have calculated the general solution of the ODE in question 2a:
y(x) = arcsinhz + C

Applying the initial condition y(0) = 5 yields 5 = arcsinh 0 + C' = C' so the
solution of the initial value problem is

y(x) = arcsinh z + 5.

(b) We have calculated the general solution of the ODE in question 2d:
y=K(z+V1+2?)

Applying the initial condition y(0) = —3 yields —3 = K (0 + /1 +0) = K so
the solution of the initial value problem is

y=-3(r+Vv1+2?).

4. First-order ODEs of homogeneous type

(a)

d
xy£+:c2+y2:(). (1)

Assuming that x # 0,y # 0, we rewrite this as
dy vy

Ty o
which shows that the equation is a first-order ODE of homogeneous type.

Put y(z) = z(x) z, thus % =z + 2 %. The ODE becomes
dz 1 1+ 22

z
dx z z
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1.e.
dz = 1+22°
dr z
Separate
z dz 1

1—1—222%: T

z 1
/1+222d2——/5d:c

[Use the substitution u = 1 + 22?]

1
Zln\1+2z2|:—ln\x|+0

In|l+22%3 = —ln|z| + In|K| = In|K/z|

K\
1+222:<—)
T
2 4
Y K
2=—=(—] —1
== (%)
1 {/K\*
y ==z —((—) —1)
2 T

This is the general solution for # # 0. Note that for x = 0 the coefficient
multiplying dy/dz in (1) vanishes — this is always a sign of trouble!

(b)

d
22y =0
dx

Observation: y = 0 is a solution.

Rewriting the ODE as
dy 'y v
dr = a2
shows that the equation is a first-order ODE of homogeneous type.

Put y(z) = z(x) z, thus j—z =z + 2 %. The ODE becomes

dz 9
24+ r—=2—2

dx
i.e. p
<2
T =E
Separate,
1 dz 1
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oz
y_ln|x\+C

This is the general solution for z # 0,y # 0. We know that y = 0 is another
solution. At x = 0 the RHS of the ODE is singular and the solution is not
defined.

5. First-order linear ODEs

(a)

(1= Py =1 2

is a linear first-order ODE.
Rearrange into the standard form dy/dz + p(z) y(z) = ¢(x):

dy x 1

d:c_l—a:Qy:l—xQ'

Integrating factor:

I = exp </p(3:) d:c) = exp (/ : :22 da:) = exp (% In(1 — g;?)) — (122,

Multiplying the ODE by the integrating factor transforms it into

d 2\1/2 1
g W =) =

[Check this by differentiating out the LHS if you don’t believe it.] Hence,
1
n1/2 _ :
y(1—a2?)? = / T dr = arcsinx + C),

~arcsinz +C
SO y = —(1 i
This is the general solution.

Initial conditions: We are given that y = 0 at z = 0. Substituting these values
into the general solution, we get:

0+C
0= % — CO=0.
So the required solution is
_arcsinz
vy= (1 _ x2)1/2'

This is valid for —1 < z < 1:
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Note that the solution is singular where the term multiplying dy/dx in (2)

vanishes.
(b)
dy_y_ T COST
dv =
is a linear first-order ODE — already in its standard form with p(z) = —1.

Integrating factor, I = exp( [ p(x) dz),
I=exp(~ o) = -
=exp(—Inz) = —.
P x
Multiplying the ODE by the integrating factor transforms it into
716
— (=) =cosx.
dr \x

Yy
x

So,
=sinz 4+ C
y=uzsinz+ Cuz.

This is the general solution.

Initial conditions: We are given that y(m) = 0. Substituting these values into
the general solution, we get:

0=0+Cr = CC=0.

So the required solution is
Yy =x sinx.
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The solution is defined for all values of .



