MATH10222: SOLUTIONS TO EXAMPLE SHEET¹ 0

1. Integration as the inversion of differentiation

(a) The derivative of

$$y_1(x) = \sin(x)$$

is (obviously!)

$$\frac{dy_1}{dx} = \cos(x)$$

and this answer is unique. Geometrically, this is because the slope of the (smooth) function $\sin(x)$ is unique.

(b) Given the derivative of $y_2(x)$ as

$$\frac{dy_2}{dx} = \cos(x),$$

the function $y_2(x)$ itself may be obtained by straightforward integration:

$$\int \frac{dy_2}{dx} \, dx = \int \cos(x) dx$$

$$y_2(x) = \sin(x) + C$$

where C is the (arbitrary!) constant of integration. The answer to the question is therefore not unique. There are infinitely many functions whose slope is given by $\cos(x)$. The functions differ by constants.

(c) Given the second derivative of $y_3(x)$ as

$$\frac{d^2y_3}{dx^2} = -\sin(x)$$

we may again obtain the function $y_3(x)$ by integration:

$$\int \frac{d^2y_3}{dx^2} \ dx = \int -\sin(x)dx,$$

$$\frac{dy_3}{dx} = \cos(x) + C,$$

where C is an arbitrary constant of integration. Applying this procedure again yields

$$\int \frac{dy_3}{dx} dx = \int (\cos(x) + C) dx,$$

$$y_3(x) = \sin(x) + Cx + D,$$

where D is another arbitrary constant of integration.

¹Any feedback to: M.Heil@maths.manchester.ac.uk

The answer to the question is therefore not unique. This is because we were given the second derivative of $y_3(x)$ and therefore had to integrate twice to obtain the function itself. In the process two constants of integration were introduced. Compared to the (arguably) simplest solution $y_3(x) = \hat{y}_3(x) =$ $\sin(x)$, the other solutions may be obtained by

- adding arbitrary constants, and/or
- adding arbitrary multiples of the function y(x) = x.

2. Ordinary Differential Equations (ODEs) as relations between a function and its derivatives

(a) You should know that the derivative of $y(x) = \exp(x)$ is $y'(x) = \exp(x) = y(x)$ again, so $y_4(x) = \exp(x)$ is a solution of

$$\frac{dy_4}{dx} = y_4(x).$$

However, this is clearly not the only solution as any multiple of $\exp(x)$ also satisfies the above equation. The answer is therefore not unique. We will soon show that

$$y_4(x) = A \exp(x)$$

where A is an arbitrary constant is, in fact, the most general solution.

(b) You should know that the second derivative of $y(x) = \cos(x)$ is $y''(x) = \cos(x)$ $-\cos(x) = -y(x)$ so $y_5(x) = \cos(x)$ is a solution of

$$\frac{d^2y_5}{dx^2} = -y_5(x).$$

As in the previous question, it should be obvious that this solution is not unique, as $y_5(x) = A\cos(x)$ also solves the above equation for any value of the constant A. Furthermore, exactly the same arguments also apply to y(x) = $\sin(x)$, so an even more general solution is given by

$$y_5(x) = A\cos(x) + B\sin(x),$$

where A and B are arbitrary constants. We will soon show that this is, in fact, the most general solution.