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Basic ideas of perturbation methods:

“Exploiting small parameters”

and “Scaling”

Observation 1:

• ODEs (and hence their solutions!) typically contain
some parameters, e.g.

mẍ + kẋ + cx = F cos(Ωt)

so
x = x(t) = x(t;m, k, c,Ω).

• Often some of the problem’s parameters are “small”.
How can we exploit this?

• Example:

– Assume that we (only) know the solution of the
above ODE for k = 0 (no damping).

– What is the solution for “small” k?
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Observation 2:

• ODEs that model physical phenomena typically
express balances (of forces, energies, currents, ...).

• Here’s an example of a balance of forces:

m

k

Wall

x(t)

c

f(t)
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mẍ︸ ︷︷ ︸

inertial forces

+ kẋ︸ ︷︷ ︸

damping forces

+ cx︸ ︷︷ ︸

spring forces

= F cos(Ωt)
︸ ︷︷ ︸

applied external force

• In general, all terms in the ODE will make a signif-
icant contribution to the overall “balance”.

• However, theremay be regimes in which the balance
of terms is dominated by a balance between just a
few (ideally two) terms, while the other terms only
provide “negligible” contributions.

• The simplified equations (obtained by neglecting the
small terms) are often much easier to solve than the
full equations.

• We may [should!] then be interested in finding the
effect that the “small” perturbations have on the
solution.

• A seemingly trivial observation: You will need at

least two terms to balance!
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Example:

m

k

Wall

x(t)

c

f(t)
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mẍ + kẋ + cx = F cos(Ωt)

• We established earlier that

x(t) = xP (t) + xH(t)

where xH(t) → 0 very rapidly.

• Following the decay of the initial transients [described
by xH(t)] we have

x(t) ≈ xP (t) = A cos(Ωt) +B sin(Ωt)

• Hence if Ω is “small”, the mass will move very slowly,
implying thatmẍ and kẋ will be much smaller than
cx.

• In this “quasi-steady” regime, we expect the motion
of the mass to be described (approximately!) by

c x(t) ≈ F cos(Ωt).
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“Proof”

• Check that

x(t) ≈
F

c
cos(Ωt)

is an approximate solution of

mẍ + kẋ + cx = F cos(Ωt)

if Ω is small.

• The exact solution is

x(t) ≈ xP (t) = A cos(Ωt) +B sin(Ωt)

where

A = F
c−mΩ2

(kΩ)2 + (c−mΩ2)2
→

F

c
as Ω → 0,

and

B = F
kΩ

(kΩ)2 + (c−mΩ2)2
→ 0 as Ω → 0.

“q.e.d.”
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Observation 3a:

• Coefficients occurring in ODEs that model physical
phenomena have dimensions!

• The dimensions of all terms must be (are!) consistent.

mẍ + kẋ + cx = F cos(Ωt)

m︸︷︷︸ ẍ︸︷︷︸+ k︸︷︷︸ ẋ︸︷︷︸+ c︸︷︷︸ x︸︷︷︸+ = F︸︷︷︸ cos( Ω︸︷︷︸ t︸︷︷︸)

m︸︷︷︸
kg

ẍ︸︷︷︸
m/sec2

+ k︸︷︷︸
?

ẋ︸︷︷︸
m/sec

+ c︸︷︷︸
N/m

x︸︷︷︸
m

+ = F︸︷︷︸
N

cos( Ω︸︷︷︸
1/sec

t︸︷︷︸
sec

)

• What’s the dimension of k? For dimensional consistency:

[k] = N/(m/sec)

or (since N = kgm/sec2; see mẍ)

[k] = k/sec

• The arguments of all functions (e.g. cos Ωt) are di-
mensionless!
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Observation 3b:

• The solution tends to depend on ratios of dimensional
coefficients.

• The ratios provide an indication of:

1. The relative size of the physical effects∗ repre-
sented by the corresponding terms.

mẍ + kẋ + cx = f cos(Ωt)

ẍ + 2δẋ + ω2x = F cos(Ωt)

where

δ =
k

2m
=

“Damping forces”

“Inertia”

and

ω2 =
c

m
=

“Spring forces”

“Inertia”
.

2. Time/length-scales over which the relevant phe-
nomena occur. E.g.

x(t) = e−δt
(

A cos(t
√

ω2
− δ2) + B sin(t

√

ω2
− δ2)

)

,

showing that

=⇒ 1/δ is a representative timescale over which
the oscillations decay.

=⇒ 1/ω is a representative timescale for the un-
damped oscillation.

∗: Disclaimer: Statement 1 is a bit too simple-
minded – we might (!) have time to come back it...
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Observations about Observations 1, 2 and 3

• The approach outlined above exploits additional

knowledge about the problem.

• You will either have such knowledge a priori or you
can make certain (hopefully plausible) assumptions
about certain properties of the solution.

• In the latter case, you’ll have to check the consis-
tency of your assumptions when you’re done. For
instance:

– Assume the the solution is such that certain terms
in the ODE are small.

– Neglect the small terms in the ODE and solve.

– Check afterwards that the terms that were as-

sumed to be small are actually small.

• The approach tends to produce approximate solu-
tions of the ODE that are valid only in certain “re-

gions of parameter space”, e.g. for small forcing
frequencies Ω, small damping k, etc.

• This is often more useful than having an exact (but
horrendously complicated) closed-form solution that
is valid for all parameter values.


