Where have we (you!) seen $x=x_{P}+x_{H}$ before?

Recall:

The general solution of the inhomogeneous ODE

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x) \tag{I}
\end{equation*}
$$

can be written as

$$
y(x)=y_{p}(x)+\alpha y_{1}(x)+\beta y_{2}(x)
$$

where:

- α and β are arbitrary constants.
- $y_{p}(x)$ is any particular solution of the inhomogeneous ODE.
- $y_{1}(x)$ and $y_{2}(x)$ are fundamental solutions of the corresponding homogeneous ODE.

Compare this to the solution of the system of linear (algebraic) equations:

$$
\mathbf{A x}=\mathbf{b}
$$

where \mathbf{A} is an $n \times n$ matrix, and \mathbf{b} a given vector of size n.
The general solution \mathbf{x} (another vector of size n) is given by

$$
\mathbf{x}=\mathbf{x}_{P}+\mathbf{x}_{H}
$$

where

- \mathbf{x}_{P} is a(ny) particular solution of $\mathbf{A x}=\mathbf{b}$
- \mathbf{x}_{H} is the generalsolution of the homogeneous system $\mathbf{A x}=\mathbf{0}$.

Example

$$
\left(\begin{array}{lll}
1 & -1 & 0 \\
2 & -2 & 0 \\
3 & -3 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right)
$$

Note that the matrix is singular, so $\mathbf{A x}=\mathbf{0}$ has non-trivial solutions!

- Transform into "triangular" form

$$
\left(\begin{array}{ccc}
1 & -1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)
$$

showing that the RHS is consistent. We're left with one equation for three unknowns.

- Set $x_{2}=\alpha$ and $x_{3}=\beta$, where α and β are arbitrary constants.
- The general solution is: $x_{1}=1+\alpha$ and, of course, $x_{2}=\alpha$ and $x_{3}=\beta$.
- Rewrite in vector form:

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\underbrace{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)}_{\mathbf{x}_{P}}+\underbrace{\alpha\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+\beta\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)}_{\mathbf{x}_{H}}
$$

- Note that

$$
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\underbrace{\left(\begin{array}{c}
2 \\
1 \\
3.1415
\end{array}\right)}_{\mathbf{x}_{P}^{\prime}}+\underbrace{\alpha^{\prime}\left(\begin{array}{c}
-42.2 \\
-42.2 \\
1145.2
\end{array}\right)+\beta^{\prime}\left(\begin{array}{c}
523.2 \\
523.2 \\
13.423
\end{array}\right)}_{\mathbf{x}_{H}^{\prime}}
$$

is another (not so pretty) representation of the general solution.

The key features of both solutions are:

- \mathbf{x}_{P} and \mathbf{x}_{P}^{\prime} solve the inhomogeneous equation.
- \mathbf{x}_{H} and \mathbf{x}_{H}^{\prime} "span the null space" of \mathbf{A}, i.e. they

1. satisfy $\mathbf{A x}=\mathbf{0}$,
2. are nonzero,
3. are linearly independent.

"Off the record comment":

In linear algebra it's "easier" to overlook the additional solutions represented by \mathbf{x}_{H}. In an ODE context, the fact that BCs [or ICs] have to be satisfied too, tends to provide an instant "reminder" that just having a particular solution of the ODE is not enough to solve the entire IVP/BVP.

