MATH10222: EXAMPLE SHEET ${ }^{1}$ IV

Questions for supervision classes
Hand in the solutions to questions 1a,c, d and 3. Attempt all other questions too and raise any problems with your supervisor. Question 1b should be straightforward. If you're a self-respecting mathematician you should find question 2 interesting.

1. Inhomogeneous linear second-order ODEs with constant coefficients

(a) Exploiting linearity

Find the general solutions of each of the following linear ODEs:
i.

$$
\ddot{y}+3 \dot{y}+2 y=4 e^{2 t} .
$$

ii.

$$
\ddot{y}+3 \dot{y}+2 y=7 .
$$

iii. Use the results just obtained to write down the general solution of the ODE

$$
\ddot{y}+3 \dot{y}+2 y=4 e^{2 t}+7 .
$$

(b) Using complex variables for trigonometric RHSs

Find the general solutions of
i.

$$
\ddot{y}+2 \dot{y}+2 y=10 \cos t
$$

ii.

$$
\ddot{y}+2 \dot{y}+2 y=10 \sin t .
$$

[Hint: Use complex variables to do both in one go.]
(c) Degenerate and non-degenerate cases for RHSs of exponential form Find the general solutions of the following ODEs. Watch out for degenerate cases!
i.

$$
\ddot{y}+3 \dot{y}+2 y=2 e^{-t}
$$

ii.

$$
\ddot{y}+4 \dot{y}+4 y=e^{-2 t}
$$

iii.

$$
\ddot{y}+2 \dot{y}+2 y=5 \cosh t
$$

iv.

$$
\ddot{y}+3 \dot{y}+2 y=2 \cosh t
$$

[^0](d) Degenerate and non-degenerate cases for polynomial RHSs

Find the general solutions of the following ODEs. Watch out for degenerate cases!
i.

$$
\ddot{y}+3 \dot{y}+2 y=1+t^{2}
$$

ii.

$$
\ddot{y}+2 \dot{y}=1+t^{2}
$$

iii.

$$
\ddot{y}=1+t^{2}
$$

2. Linear ODEs with non-constant coefficients: Euler's ODE

(a) Homogeneous second-order Euler ODEs have the form

$$
a t^{2} \ddot{y}+b t \dot{y}+c y=0,
$$

where a, b and c are constants. Explain why looking for solutions of the form $y \sim t^{n}$ is a promising ansatz.
(b) Use the ansatz to obtain the general solution of

$$
t^{2} \ddot{y}+2 t \dot{y}-2 y=0
$$

and explain why your method works.
(c) Explain why the ansatz doesn't work for the ODE

$$
t^{2} \ddot{y}-t \dot{y}+y=0 .
$$

How would you obtain a second, linearly independent solution for this ODE?

3. Non-linear ODEs with special properties

(a) Solve the autonomous nonlinear ODE

$$
y y^{\prime \prime}=\left(y^{\prime}\right)^{2} .
$$

(b) Solve the initial value problem

$$
y^{\prime \prime}=\frac{2 x^{2}}{\left(y^{\prime}\right)^{2}}
$$

subject to

$$
y^{\prime}(1)=2^{1 / 3} \quad \text { and } \quad y(1)=2^{-2 / 3}
$$

[Hint: Apply the initial conditions as soon as possible, otherwise the algebra gets messy...]

[^0]: ${ }^{1}$ Any feedback to: M.Heil@maths.manchester.ac.uk

