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3 Second-Order Ordinary Differential Equations
The general form of a second-order ODE is given by
F(z,y(x),y'(2),y"(x)) = 0.
It is typically augmented by two boundary or initial conditions, i.e constraints of the form
y(X) =Y, J(X)=2

or
y(X1) =Y1, y(Xa) =Y,

where the constants X, Y, Z (or X1, Y1, Xo,Y3) are given.
Often the ODE can be written in explicit form as

y'(x) = f(z,y(2), ¥ (2)).

In this lecture we will mainly concentrate on linear second-order ODEs. (In section 3.3 we will briefly
discuss the solution of two particular types of nonlinear ODEs).

3.1 Some theory for linear second-order ODEs

e In general, we shall write a linear second-order ODE for y(z) in one of two ways, either as

a(x)y” +b(x)y" + c(x)y = d(x)
o y' +p(x)y +q(2)y = r(z).

We will take these ODEs to be defined on an interval

I=(a,B)={z|la<z<pB}
which is chosen such that, at all values of x in I:

— a(x), b(x), c(x) and d(x) are defined and continuous

— and a(x) is never zero

so that the functions p(z), ¢(x) and r(z), which are defined as

p(x) = b(z)/a(z), q(z) = c(@)/alz), r(z)=d(z)/a(z),
are also defined and continuous throughout I.

e Theorem (Existence and Uniqueness): If y(x) satisfies the ODE y” + p(x) ¢y’ + q(z) y = r(x),
and the functions p(z), ¢(z) and r(x) are continuous throughout the interval I, then there is only
one solution that satisfies the pair of initial conditions

y(X)=Y and ¢ (X)=Z7

and this solution exists throughout the interval I.
This theorem guarantees that solutions will exist throughout the interval I and that the two initial

conditions, one giving the value of y and the other giving the value of its derivative ', both specified
at the same point in I, are enough to select a unique solution.

Note that the existence and uniqueness theorem only applies to initial value problems!

e Superposition: In the special case in which the ODE has r(x) set equal to zero, that is for the
special form of the ODE

y'+p@)y +a@)y=0
which is known as the ‘homogeneous’ form of the ODE, a linear combination of any solutions is

also a solution. Thus if y;(x) and y2(x) are solutions of ¥ + p(x)y’ + q(z)y = 0 then so is any
function that can be written as Ay;(z) + Bya(z) for any constants A and B.
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e Fundamental Solutions: What is more, any solution of the homogeneous second-order linear
ODE 4" + p(x)y' + q(z) y = 0 can be written as a linear combination of only two solutions y; (x)
and yo(x), known as ‘fundamental solutions,” provided y;(x) and y2(x) are nonzero and linearly
independent.

[Reminder: Two functions y;(z) and y2(x), defined on I, are said to be linearly independent on
I if the only linear combination of them that adds up to zero, so that Ay, (z) + Bya(z) = 0 for all
x € I, is the one for which A = B =0.]

The choice of fundamental solutions is not unique. For instance, if {y1(z),y2(z)} is a set of funda-
mental solutions for a given linear homogeneous ODE then {y1(z), (y1(2) + y2(z)) } is another set
of fundamental solutions.

A solution of the homogeneous ODE is sometimes called a complementary function.

e General Solutions: Any solution of the non-homogeneous ODE y” 4+ p(x) ¢y’ + ¢(x) y = r(z) has
the form, known as the ‘general solution’

y =yp(r) + Ayi(z) + Byz(x)

where yp(z), known as a ‘particular solution,’ is a solution of the non-homogeneous ODE, and y; ()
and yo(z) are fundamental solutions of the homogeneous form of the ODE, in which r(x) is set to
zZero.

e The solution to a specific boundary or initial value problem can therefore be obtained in four steps:
1. Find the general solutions of the homogeneous ODE:
y' +p@)y +e@)y=0 = yu(x)=Ay(2)+ Bya(2),

where y;1(x) and yo(z) are two nonzero, linearly independent solutions, i.e. they are funda-
mental solutions of the homogenous ODE.

2. Find a particular solution of the inhomogeneous ODE
y'+p@)y +a@)y=r() = yr(2).
3. Write down the general solution
y(@) = yp(z) + yu(z) = yp(z) + Ayi(z) + By (z).

4. Determine the constants A and B from the boundary or initial conditions.

3.2 Linear second-order ODEs with constant coefficients
3.2.1 The general solution of the homogenous ODE
e Second-order ODEs for y(x) of the form
y' +py +qy=0 with p and ¢ constant
can always be solved, for all real values of x, using the ansatz
y= e
[Important: The method does not generally work when p and ¢ are not constant.]

e Inserting y = e** into the ODE and cancelling the common factor e** yields the so-called charac-

teristic polynomial
M 4+pA+qg=0 withroots \= %(—pi \V p? —4q).

The roots, and hence the nature of the solutions, depends on the sign of the ‘discriminant’ p? — 4q:
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Case 1: p?2 —4q >0
If the discriminant is positive (p? — 4¢q > 0) then X has two distinct real roots of the form

M=4(-p— VP —dg) and N =L(-p+ Vi),
The general solution of the homogenous ODE can therefore be written as
y=AeM" 4 Bete®,

where A and B are arbitrary constants.

Case 2: p2 —4g <0
If the discriminant is negative (p?> — 4¢ < 0) then A has two complex conjugate roots of the
form
1

A=p+iw with p=-—3p and w=3\/4q—p>

The general solution of the homogeneous ODE can then be written as
y = A e"* cos(wz) + B e*” sin(wx),

where A and B are arbitrary constants.

Case 3: p> —4g =0
If the discriminant is zero (p? —4q = 0) then the characteristic polynomial has one double root

M2 =A=—3p

giving only one fundamental solution 3 = e** = e P*/2, However another fundamental
solution is yp = ze?* = xeP*/2 (Erercise: check this by substitution). The general solution
of the homogeneous ODE can therefore be written as

y=Ae P24 Bre P2

where A and B are arbitrary constants.

3.2.2 The particular solution of the inhomogenous ODE: The method of undetermined
coefficients

e The method of undetermined coefficients is, more or less, a process of trial and error, or guesswork,
based on making a suitable initial assumption about the overall form of the solution.

e The method and its pitfalls are best illustrated with an example:
y' +py +aqy = Ae".

Initial ansatz:
Given that the RHS e®* retains its functional form when differentiated, it is tempting to try
a solution in the form y = C' e, having 3y’ = Cae® and y” = Ca® e, so that

Ca? e + pCae®™ +qC " = Ae™ or (a®+pa+q)C = A

which requires that C' = m, leading to the particular solution
= ()*#e‘” ovided a®+4pa+q#0
y=1yp(x = P ipatq provi a4+ pa—+q .

Modification if a is a (single) root of the characteristic polynomial
If a? + pa + ¢ = 0 the initial ansatz, that y = C e, is obviously inadequate. We note that
this case arises if the a happens to be a root of the characteristic polynomial of the associated
homogeneous ODE. In this case, another ansatz is appropriate. We assume, instead, that

y=Cze™ sothat y =C(1+ax)e™, y"=C(2a+ a’x)e.
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In this case the ODE gives
C(2a + a*z) e + pC(1 + ax) e + qCre®™ = Ae™

. (z(a® +ap+q) +2a+p)C = (2a +p)C = A
| ——
=0
since a® 4+ ap + ¢ = 0. Thus we find that C = 2a+p, leading to the particular solution
A
y=yp(x) = ze® vprovided a?+pa+qg=0 and 2a+p#0.
2a +p

Modification if a is a double root of the characteristic polynomial
If both a? + pa + ¢ and 2a + p are zero, then both guesses, that y = Ce®® or y = Cze®, are
obviously inadequate. We note that this case arises if a is a double root of the characteristic
polynomial. In this case, yet another ansatz is appropriate. We now assume that

y=Cz?e" sothat 3y =C(2z+ax®)e®, 3y’ = C(2+4dazx + a’z?)e™.
In this case the ODE gives
C (2 + 4ax + a®2?) e 4 pC(2z + ax?) e + qCx? e = Ae™

or (502 (a2+ap+q)+x2(2a+p)+2)0:2C:A
—_——— —_———
-0 =0
since a2 4+ ap + ¢ = 0 and 2a + p = 0. Thus we find that C = %A, leading to the particular

solution
y=yp(z) = %AxQeam provided a?+pa+q=0 and 2a+p=0.

e This example shows that a particular solution of the ODE 3" + py’ + qy = A e%*, with constant
coefficients p and ¢, typically takes the form Cz™ e®® for an integer power m that depends on
whether or not e*® and ze®” are solutions of the homogeneous equation.

e Based on this observation we can formulate the “method of undetermined coefficients” for inho-
mogenous, constant-coefficient of the form

v +py +qy=Airi(z)+ Asra(x) + -+ Ay rp(z)

where the RHS is a linear combination of n given, linearly-independent functions r;(x) (i = 1, ..., n).

The idea is the following:

1. We initially try to find a particular solution that contains the same (linearly independent)
functions that occur on the RHS:

yginitial] () = C1ry(2) + Cora(z) + -+ + C ()

with undetermined (constant) coefficients C; (i = 1,...,n). The plan is to insert this into the
ODE and to collect the coefficients that multiply the same functions r;(z) (i = 1,...,n). Since
the r;(z) are linearly independent, their linear combination can only vanish if the coefficients
multiplying them vanish individually. This provides n equations for the n unknown coefficients
C; (i=1,...,n). Bingo!

2. This doesn’t work, however, if the derivative of any of the r;(z) cannot be expressed as a linear

combination of the terms in y[mmal]. [In the above example, the derivatives of r(z) = e

were simply multiples of €%, so no additional functions arose. However, if r1(z) = 22, say, the

differentiation of y[mmal] Would also produce 7 (z) = 2z and 7} (z) = 2.]

To deal with such cases, we generalise our ansatz to the form

yp" @) = Ciri(@) +Cara(@) + -+ Curala)
+ D1 r(z) + Darh(z) + -+ Dy 7l (x)
+ Eir(z) + Eary(x) + -+ E, (),
where we set the coefficients E; and D; (i = 1,...,n) that multiply terms that are already

[initial] ( )

contained in yp to zero.
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3. Finally, we have to deal with the case where some of the terms in y[PbetteT] are solutions of the

homogenous ODE 4" +py'+qy = 0. Let 7(z) be a term in ygett”] (7) that is a solution of the

homogeneous ODE. For each such term, we replace 7(z) by ™ 7#(x), where m is the smallest

positive integer for which ™ 7(z) does not solve the homogeneous ODE. If the derivatives of

™ 7(z) create new linearly independent functions, not yet contained in y%ettar], add these too.

3.3 Some nonlinear second-order ODEs

In a few cases, second-order ODEs can be solved as first-order ODEs. Two important cases are those
that take the form

d? d d? d

F=rlg) o F=rfFE)
when describing y(t). The first of these represents second-order ODEs that are autonomous, which is to
say that they do not depend on ¢ (apart from differentiating with respect to t). The second represents
second-order ODEs that do not depend on y (except as derivatives of y).
3.3.1 Second-order ODEs for y(¢) that do not depend on y

Such ODEs take the form
y' = f(t,y).

All we need to do is note that this is actually a first-order ODE for y/(t). If we write, v(t) = y/(t) then
the ODE is clearly a first-order ODE for v, namely

v = f(t,v).

If this is solved to find a solution v(t), then y(¢) is a solution of the first-order ODE 3’ = v(t).

3.3.2 Autonomous second-order ODEs

Autonomous second-order ODEs which, when describing y(¢) have the form

y' = f(y,y")
can also be solved by writing v = 3/(¢), but in a different way. Differentiating y'(¢) = v gives

v _dvdy  dv
Codt dydt dy’

The ODE can therefore be rewritten in the form
’US_Z = f(ya U)

which, if we think of v as being a function of y, is a first-order ODE for v. If we can solve for v = v(y)
then y(t) is a solution of the first-order ODE 4’ = v(y).



