3 Second-Order Ordinary Differential Equations

The general form of a second-order ODE is given by

$$
\mathcal{F}\left(x, y(x), y^{\prime}(x), y^{\prime \prime}(x)\right)=0
$$

It is typically augmented by two boundary or initial conditions, i.e constraints of the form

$$
y(X)=Y, \quad y^{\prime}(X)=Z
$$

or

$$
y\left(X_{1}\right)=Y_{1}, \quad y\left(X_{2}\right)=Y_{2}
$$

where the constants X, Y, Z (or $X_{1}, Y_{1}, X_{2}, Y_{2}$) are given.
Often the ODE can be written in explicit form as

$$
y^{\prime \prime}(x)=f\left(x, y(x), y^{\prime}(x)\right)
$$

In this lecture we will mainly concentrate on linear second-order ODEs. (In section 3.3 we will briefly discuss the solution of two particular types of nonlinear ODEs).

3.1 Some theory for linear second-order ODEs

- In general, we shall write a linear second-order ODE for $y(x)$ in one of two ways, either as

$$
a(x) y^{\prime \prime}+b(x) y^{\prime}+c(x) y=d(x)
$$

or as

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x)
$$

We will take these ODEs to be defined on an interval

$$
I=(\alpha, \beta)=\{x \mid \alpha<x<\beta\}
$$

which is chosen such that, at all values of x in I :
$-a(x), b(x), c(x)$ and $d(x)$ are defined and continuous

- and $a(x)$ is never zero
so that the functions $p(x), q(x)$ and $r(x)$, which are defined as

$$
p(x)=b(x) / a(x), \quad q(x)=c(x) / a(x), \quad r(x)=d(x) / a(x)
$$

are also defined and continuous throughout I.

- Theorem (Existence and Uniqueness): If $y(x)$ satisfies the ODE $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x)$, and the functions $p(x), q(x)$ and $r(x)$ are continuous throughout the interval I, then there is only one solution that satisfies the pair of initial conditions

$$
y(X)=Y \quad \text { and } \quad y^{\prime}(X)=Z
$$

and this solution exists throughout the interval I.
This theorem guarantees that solutions will exist throughout the interval I and that the two initial conditions, one giving the value of y and the other giving the value of its derivative y^{\prime}, both specified at the same point in I, are enough to select a unique solution.
Note that the existence and uniqueness theorem only applies to initial value problems!

- Superposition: In the special case in which the ODE has $r(x)$ set equal to zero, that is for the special form of the ODE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

which is known as the 'homogeneous' form of the ODE, a linear combination of any solutions is also a solution. Thus if $y_{1}(x)$ and $y_{2}(x)$ are solutions of $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ then so is any function that can be written as $A y_{1}(x)+B y_{2}(x)$ for any constants A and B.

- Fundamental Solutions: What is more, any solution of the homogeneous second-order linear ODE $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0$ can be written as a linear combination of only two solutions $y_{1}(x)$ and $y_{2}(x)$, known as 'fundamental solutions,' provided $y_{1}(x)$ and $y_{2}(x)$ are nonzero and linearly independent.
[Reminder: Two functions $y_{1}(x)$ and $y_{2}(x)$, defined on I, are said to be linearly independent on I if the only linear combination of them that adds up to zero, so that $A y_{1}(x)+B y_{2}(x)=0$ for all $x \in I$, is the one for which $A=B=0$.]
The choice of fundamental solutions is not unique. For instance, if $\left\{y_{1}(x), y_{2}(x)\right\}$ is a set of fundamental solutions for a given linear homogeneous ODE then $\left\{y_{1}(x),\left(y_{1}(x)+y_{2}(x)\right)\right\}$ is another set of fundamental solutions.
A solution of the homogeneous ODE is sometimes called a complementary function.
- General Solutions: Any solution of the non-homogeneous ODE $y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x)$ has the form, known as the 'general solution'

$$
y=y_{P}(x)+A y_{1}(x)+B y_{2}(x)
$$

where $y_{P}(x)$, known as a 'particular solution,' is a solution of the non-homogeneous ODE, and $y_{1}(x)$ and $y_{2}(x)$ are fundamental solutions of the homogeneous form of the ODE, in which $r(x)$ is set to zero.

- The solution to a specific boundary or initial value problem can therefore be obtained in four steps:

1. Find the general solutions of the homogeneous ODE:

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \quad \Longrightarrow \quad y_{H}(x)=A y_{1}(x)+B y_{2}(x)
$$

where $y_{1}(x)$ and $y_{2}(x)$ are two nonzero, linearly independent solutions, i.e. they are fundamental solutions of the homogenous ODE.
2. Find a particular solution of the inhomogeneous ODE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x) \quad \Longrightarrow \quad y_{P}(x)
$$

3. Write down the general solution

$$
y(x)=y_{P}(x)+y_{H}(x)=y_{P}(x)+A y_{1}(x)+B y_{2}(x) .
$$

4. Determine the constants A and B from the boundary or initial conditions.

3.2 Linear second-order ODEs with constant coefficients

3.2.1 The general solution of the homogenous ODE

- Second-order ODEs for $y(x)$ of the form

$$
y^{\prime \prime}+p y^{\prime}+q y=0 \quad \text { with } p \text { and } q \text { constant }
$$

can always be solved, for all real values of x, using the ansatz

$$
y=e^{\lambda x}
$$

[Important: The method does not generally work when p and q are not constant.]

- Inserting $y=e^{\lambda x}$ into the ODE and cancelling the common factor $e^{\lambda x}$ yields the so-called characteristic polynomial

$$
\lambda^{2}+p \lambda+q=0 \quad \text { with roots } \quad \lambda=\frac{1}{2}\left(-p \pm \sqrt{p^{2}-4 q}\right)
$$

The roots, and hence the nature of the solutions, depends on the sign of the 'discriminant' $p^{2}-4 q$:

Case 1: $p^{2}-4 q>0$
If the discriminant is positive $\left(p^{2}-4 q>0\right)$ then λ has two distinct real roots of the form

$$
\lambda_{1}=\frac{1}{2}\left(-p-\sqrt{p^{2}-4 q}\right) \quad \text { and } \quad \lambda_{2}=\frac{1}{2}\left(-p+\sqrt{p^{2}-4 q}\right)
$$

The general solution of the homogenous ODE can therefore be written as

$$
y=A e^{\lambda_{1} x}+B e^{\lambda_{2} x}
$$

where A and B are arbitrary constants.
Case 2: $p^{2}-4 q<0$
If the discriminant is negative $\left(p^{2}-4 q<0\right)$ then λ has two complex conjugate roots of the form

$$
\lambda=\mu \pm i \omega \quad \text { with } \quad \mu=-\frac{1}{2} p \quad \text { and } \quad \omega=\frac{1}{2} \sqrt{4 q-p^{2}}
$$

The general solution of the homogeneous ODE can then be written as

$$
y=A \mathrm{e}^{\mu x} \cos (\omega x)+B \mathrm{e}^{\mu x} \sin (\omega x)
$$

where A and B are arbitrary constants.
Case 3: $p^{2}-4 q=0$
If the discriminant is zero $\left(p^{2}-4 q=0\right)$ then the characteristic polynomial has one double root

$$
\lambda_{1,2}=\lambda=-\frac{1}{2} p
$$

giving only one fundamental solution $y_{1}=e^{\lambda x}=e^{-p x / 2}$. However another fundamental solution is $y_{2}=x e^{\lambda x}=x e^{-p x / 2}$ (Exercise: check this by substitution). The general solution of the homogeneous ODE can therefore be written as

$$
y=A e^{-p x / 2}+B x e^{-p x / 2},
$$

where A and B are arbitrary constants.

3.2.2 The particular solution of the inhomogenous ODE: The method of undetermined coefficients

- The method of undetermined coefficients is, more or less, a process of trial and error, or guesswork, based on making a suitable initial assumption about the overall form of the solution.
- The method and its pitfalls are best illustrated with an example:

$$
y^{\prime \prime}+p y^{\prime}+q y=A e^{a x}
$$

Initial ansatz:

Given that the RHS $e^{a x}$ retains its functional form when differentiated, it is tempting to try a solution in the form $y=C e^{a x}$, having $y^{\prime}=C a e^{a x}$ and $y^{\prime \prime}=C a^{2} e^{a x}$, so that

$$
C a^{2} e^{a x}+p C a e^{a x}+q C e^{a x}=A e^{a x} \quad \text { or } \quad\left(a^{2}+p a+q\right) C=A
$$

which requires that $C=\frac{A}{a^{2}+p a+q}$, leading to the particular solution

$$
y=y_{\mathrm{p}}(x)=\frac{A}{a^{2}+p a+q} e^{a x} \quad \text { provided } \quad a^{2}+p a+q \neq 0
$$

Modification if a is a (single) root of the characteristic polynomial
If $a^{2}+p a+q=0$ the initial ansatz, that $y=C e^{a x}$, is obviously inadequate. We note that this case arises if the a happens to be a root of the characteristic polynomial of the associated homogeneous ODE. In this case, another ansatz is appropriate. We assume, instead, that

$$
y=C x e^{a x} \quad \text { so that } \quad y^{\prime}=C(1+a x) e^{a x}, \quad y^{\prime \prime}=C\left(2 a+a^{2} x\right) e^{a x}
$$

In this case the ODE gives

$$
C\left(2 a+a^{2} x\right) e^{a x}+p C(1+a x) e^{a x}+q C x e^{a x}=A e^{a x}
$$

or

$$
(x \underbrace{\left(a^{2}+a p+q\right)}_{=0}+2 a+p) C=(2 a+p) C=A
$$

since $a^{2}+a p+q=0$. Thus we find that $C=\frac{A}{2 a+p}$, leading to the particular solution

$$
y=y_{\mathrm{p}}(x)=\frac{A}{2 a+p} x e^{a x} \quad \text { provided } \quad a^{2}+p a+q=0 \quad \text { and } \quad 2 a+p \neq 0
$$

Modification if a is a double root of the characteristic polynomial

If both $a^{2}+p a+q$ and $2 a+p$ are zero, then both guesses, that $y=C e^{a x}$ or $y=C x e^{a x}$, are obviously inadequate. We note that this case arises if a is a double root of the characteristic polynomial. In this case, yet another ansatz is appropriate. We now assume that

$$
y=C x^{2} e^{a x} \quad \text { so that } \quad y^{\prime}=C\left(2 x+a x^{2}\right) e^{a x}, \quad y^{\prime \prime}=C\left(2+4 a x+a^{2} x^{2}\right) e^{a x}
$$

In this case the ODE gives

$$
\begin{gathered}
C\left(2+4 a x+a^{2} x^{2}\right) e^{a x}+p C\left(2 x+a x^{2}\right) e^{a x}+q C x^{2} e^{a x}=A e^{a x} \\
(x^{2} \underbrace{\left(a^{2}+a p+q\right)}_{=0}+x \underbrace{2(2 a+p)}_{=0}+2) C=2 C=A
\end{gathered}
$$

or
since $a^{2}+a p+q=0$ and $2 a+p=0$. Thus we find that $C=\frac{1}{2} A$, leading to the particular solution

$$
y=y_{\mathrm{p}}(x)=\frac{1}{2} A x^{2} e^{a x} \quad \text { provided } \quad a^{2}+p a+q=0 \quad \text { and } \quad 2 a+p=0 .
$$

- This example shows that a particular solution of the ODE $y^{\prime \prime}+p y^{\prime}+q y=A e^{a x}$, with constant coefficients p and q, typically takes the form $C x^{m} e^{a x}$ for an integer power m that depends on whether or not $e^{a x}$ and $x e^{a x}$ are solutions of the homogeneous equation.
- Based on this observation we can formulate the "method of undetermined coefficients" for inhomogenous, constant-coefficient of the form

$$
y^{\prime \prime}+p y^{\prime}+q y=A_{1} r_{1}(x)+A_{2} r_{2}(x)+\cdots+A_{n} r_{n}(x)
$$

where the RHS is a linear combination of n given, linearly-independent functions $r_{i}(x)(i=1, \ldots, n)$. The idea is the following:

1. We initially try to find a particular solution that contains the same (linearly independent) functions that occur on the RHS:

$$
y_{P}^{[i n i t i a l]}(x)=C_{1} r_{1}(x)+C_{2} r_{2}(x)+\cdots+C_{n} r_{n}(x)
$$

with undetermined (constant) coefficients $C_{i}(i=1, \ldots, n)$. The plan is to insert this into the ODE and to collect the coefficients that multiply the same functions $r_{i}(x)(i=1, \ldots, n)$. Since the $r_{i}(x)$ are linearly independent, their linear combination can only vanish if the coefficients multiplying them vanish individually. This provides n equations for the n unknown coefficients $C_{i}(i=1, \ldots, n)$. Bingo!
2. This doesn't work, however, if the derivative of any of the $r_{i}(x)$ cannot be expressed as a linear combination of the terms in $y_{P}^{[\text {initial }]}$. [In the above example, the derivatives of $r_{1}(x)=e^{a x}$ were simply multiples of $e^{a x}$, so no additional functions arose. However, if $r_{1}(x)=x^{2}$, say, the differentiation of $y_{P}^{[\text {initial }]}$ would also produce $r_{1}^{\prime}(x)=2 x$ and $r_{1}^{\prime \prime}(x)=2$.]
To deal with such cases, we generalise our ansatz to the form

$$
\begin{aligned}
y_{P}^{[\text {better }]}(x) & =C_{1} r_{1}(x)+C_{2} r_{2}(x)+\cdots+C_{n} r_{n}(x) \\
& +D_{1} r_{1}^{\prime}(x)+D_{2} r_{2}^{\prime}(x)+\cdots+D_{n} r_{n}^{\prime}(x) \\
& +E_{1} r_{1}^{\prime \prime}(x)+E_{2} r_{2}^{\prime \prime}(x)+\cdots+E_{n} r_{n}^{\prime \prime}(x),
\end{aligned}
$$

where we set the coefficients E_{i} and $D_{i}(i=1, \ldots, n)$ that multiply terms that are already contained in $y_{P}^{[\text {initial }]}(x)$ to zero.
3. Finally, we have to deal with the case where some of the terms in $y_{P}^{[b e t t e r]}$ are solutions of the homogenous ODE $y^{\prime \prime}+p y^{\prime}+q y=0$. Let $\tilde{r}(x)$ be a term in $y_{P}^{[b e t t e r]}(x)$ that is a solution of the homogeneous ODE. For each such term, we replace $\tilde{r}(x)$ by $x^{m} \tilde{r}(x)$, where m is the smallest positive integer for which $x^{m} \tilde{r}(x)$ does not solve the homogeneous ODE. If the derivatives of $x^{m} \tilde{r}(x)$ create new linearly independent functions, not yet contained in $y_{P}^{[b e t t e r]}$, add these too.

3.3 Some nonlinear second-order ODEs

In a few cases, second-order ODEs can be solved as first-order ODEs. Two important cases are those that take the form

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=f\left(y, \frac{\mathrm{~d} y}{\mathrm{~d} t}\right) \quad \text { or } \quad \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}=f\left(t, \frac{\mathrm{~d} y}{\mathrm{~d} t}\right)
$$

when describing $y(t)$. The first of these represents second-order ODEs that are autonomous, which is to say that they do not depend on t (apart from differentiating with respect to t). The second represents second-order ODEs that do not depend on y (except as derivatives of y).

3.3.1 Second-order ODEs for $y(t)$ that do not depend on y

Such ODEs take the form

$$
y^{\prime \prime}=f\left(t, y^{\prime}\right)
$$

All we need to do is note that this is actually a first-order ODE for $y^{\prime}(t)$. If we write, $v(t)=y^{\prime}(t)$ then the ODE is clearly a first-order ODE for v, namely

$$
v^{\prime}=f(t, v)
$$

If this is solved to find a solution $v(t)$, then $y(t)$ is a solution of the first-order ODE $y^{\prime}=v(t)$.

3.3.2 Autonomous second-order ODEs

Autonomous second-order ODEs which, when describing $y(t)$ have the form

$$
y^{\prime \prime}=f\left(y, y^{\prime}\right)
$$

can also be solved by writing $v=y^{\prime}(t)$, but in a different way. Differentiating $y^{\prime}(t)=v$ gives

$$
y^{\prime \prime}=\frac{\mathrm{d} v}{\mathrm{~d} t}=\frac{\mathrm{d} v}{\mathrm{~d} y} \frac{\mathrm{~d} y}{\mathrm{~d} t}=v \frac{\mathrm{~d} v}{\mathrm{~d} y}
$$

The ODE can therefore be rewritten in the form

$$
v \frac{\mathrm{~d} v}{\mathrm{~d} y}=f(y, v)
$$

which, if we think of v as being a function of y, is a first-order ODE for v. If we can solve for $v=v(y)$ then $y(t)$ is a solution of the first-order ODE $y^{\prime}=v(y)$.

