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MATH10222 Lecture Notes

This set of notes summarises the main results of the first half of the lecture MATH10222 (Calculus and
Applications). Please email any corrections (yes, there might be the odd typo...) or suggestions for
improvement to M.Heil@maths.manchester.ac.uk or see me after the lecture.

Generally, the notes will be handed out after the material has been covered in the lecture. You can
also download them from the WWW:

https://personalpages.manchester.ac.uk/staff/matthias.heil/Lectures/FirstYearODEs/index.html.

This WWW page will also contain announcements, example sheets, solutions, etc.
This course does not follow any particular textbook – your lecture notes and the handouts will be

completely sufficient. If you bought Stewart’s textbook for the first-semester courses, you can, of course,
consult it on any of the topics covered in this lecture.

If you want a concise overview of the theory plus lots and lots of worked examples, have a look at
Richard Bronson’s “Differential Equations” in the Schaum’s Outline Series.



1 GENERALITIES 2

1 Generalities

1.1 Ordinary derivatives

• A differentiable function y(x) of one independent variable, or “argument” x, has the derivative

dy

dx
(x) or y′(x)

(either notation meaning the same thing) which represents the rate at which y(x) changes as x
changes, at the point x. That is, y′(x) is a function defined by the limit

y′(x) = lim
|h|→0

y(x+h)− y(x)

h
.

• The function y(x) is said to be differentiable in an interval I ⊆ R if this limit exists at all values of
x in the interval.

• If y′(x) is also differentiable, then a second derivative, y′′(x) or d2y

dx2 (x), can be defined by replacing
y with y′ in the definition. Similarly, provided it exists, a derivative of order n

dny

dxn
(x) or y(n)(x)

can be defined by repeating the differentiation n times.

• Alternative notations: A superscript dot or a capital D are also sometimes used to denote
differentiation. A subscript (normally signifying partial differentiation) can also be used to denote
ordinary differentiation. Thus derivatives of u(t) can be represented by1

u̇(t) = Du(t) = ut(t) = u(1)(t) =
du

dt
(t) = u′(t), ü = D2u = utt = u(2) =

d2u

dt2
= u′′.

• Note that it is not necessary to write out the argument, in this case ‘(t)’, after each of the derivatives,
if it is clearly understood that u, u′, u′′, etc. are all functions of t.

1.2 Ordinary Differential Equations

• Ordinary Differential Equations: An ordinary differential equation, or ODE, relates a function
y(x) to x and some of its derivatives, y′(x), y′′(x), . . . , y(n)(x). In general it has the form

F
(

x, y, y(1), y(2), . . . , y(n)
)

= 0

although we will often assume that it can be written in the form

y(n) = f
(

x, y, y(1), y(2), . . . , y(n−1)
)

.

Much of this course will be devoted to studying ordinary differential equations of this type. The
order of an ordinary differential equation is the order of the highest derivative appearing in the
equation.

• Solutions: A solution of the ODE F
(

x, y, y(1), . . . , y(n)
)

= 0 on an interval I is any function φ(x)

such that φ and all of the derivatives φ(1), φ(2), . . . , φ(n) exist on I and

F
(

x, φ, φ(1), . . . , φ(n)
)

= 0 for all x ∈ I.

• Linear ODEs: Linear ODEs have a rich theoretical foundation and they are simpler to analyse
than nonlinear ODEs. The ordinary differential equation for y(x)

F
(

x, y, y(1), y(2), . . . , y(n)
)

= 0

1Yet other notations for derivatives are sometimes encountered in various texts.
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is linear if F
(

x, y, y(1), . . . , y(n)
)

is linear in y and all derivatives of y (namely, all of the arguments

y, y(1), y(2), . . . , y(n)). In other words, it is linear if the ODE can be written in the form

an(x)y
(n) + an−1(x)y

(n−1) + · · ·+ a0(x)y − g(x) = 0

in which all of the coefficients g, a0, a1, . . . , an depend only on x (that is, they do not depend on
y or any derivatives of y).

• Autonomous ODEs: An ODE for y(x) of the form F
(

y, y(1), . . . , y(n)
)

= 0 in which the indepen-
dent variable x does not appear, is said to be autonomous.

• Examples: The ODE (1− t)u′′ − tu = 0 for u(t) is non-autonomous and linear; the ODE v′(z) +
v′2(z)− v(z) = 0 for v(z) is autonomous and nonlinear.

1.3 Some basic preliminaries

We will now look at a number of simple examples and basic features of ordinary differential equations,
the use of additional information at particular points, and the way in which solutions of ODEs depend
on such data.

1.3.1 Existence of solutions

• It is not always obvious that solutions will exist at all. For example, the following ODE for y(x)

y′ + 1/y′ = 0

cannot have a real-valued solution. The value of the derivative of any solution would have to be
either y′ = i or y′ = − i , where i =

√
−1, which is not real. Therefore, if we are dealing only with

real functions, then there is no solution.

1.3.2 Non-uniqueness

• If we solve the very simple ODE d2y

dx2 = 0, for y(x), by integrating successively, we obtain

d2y

dx2
= 0,

dy

dx
= A1 and y = A1x+A2

where A1 and A2 are “arbitrary” constants of integration. That is, the function A1x+A2 provides
a solution of y′′ = 0 whatever constant values are chosen for A1 and A2.

In fact, every solution of this ODE has the form A1x + A2 for constant values of A1 and A2. The
solution is not unique since a different choice of values for A1 and A2 provides a different solution.

1.3.3 Boundary and initial conditions

• A unique solution can only therefore arise if there are additional constraints on the allowed values
of the solution. In general, for an nth order ODE, there must be n independent constraints, if there
is to be a unique solution. These constraints are usually provided by “boundary conditions” or
“initial conditions”.

• Example 1: As has been seen, the simple ordinary differential equation d2y

dx2 = 0 has the solution
y = A1x+A2 for arbitrary values of A1 and A2. If we impose the two constraints

y(0) = 1 and y(1) = 0

then we find that:

y(0) = 1 : A1 × 0 +A2 = 1

y(1) = 0 : A1 × 1 +A2 = 0

}

=⇒ A1 = −1 and A2 = 1.

There is, therefore, only one solution, namely y = −x+1, that satisfies the two constraints y(0) = 1
and y(1) = 0.
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• Example 2: The ordinary differential equation xy′′ − (1 + x)y′ + y = 0 has the solution
y = B1 e

x +B2(1 + x) for arbitrary values of B1 and B2. If we impose the constraints

y(1) = −1 and y′(1) = 0

then we find that:

y(1) = −1 : B1 e + 2B2 = −1

y′(1) = 0 : B1 e + B2 = 0

}

=⇒ B1 = e
−1 and B2 = −1.

There is, therefore, only one solution, namely y = ex−1 − (1 + x), that satisfies the two constraints
y(1) = −1 and y′(1) = 0.

• Initial value problem (IVP): When all of the constraints are specified at the same value of x,
the problem is called an initial value problem, as in Example 2 above. In applications, initial value
problems typically represent evolutionary problems in which the initial conditions specify the initial
state of a system while the ODE describes its rate of change.

• Boundary value problem (BVP): When constraints are specified at two, or more, different
values of x, for example at each end of an interval I, then the problem is called a boundary value
problem, as in Example 1 above. In applications, boundary value problems typically represent
spatial problems in which the boundary conditions specify the state of a system at its boundary
while the ODE describes its behaviour in the interior.

• Note: A first-order ordinary differential equation with one constraint is, automatically, an initial
value problem.

• Exceptions: In these examples, we have seen that n independent constraints lead to a unique
solution of an nth order ordinary differential equation. However, this is not always the case!

1.3.4 Basic questions

• Given an initial value problem or a boundary value problem we would like to know the answers to
the following questions:

EXISTENCE: Is there any solution at all?

An ODE arising from a physical problem should have at least one solution if the
mathematical form of the model is correct.

UNIQUENESS: How many solutions are there, or how many constraints are
needed to obtain a unique solution?

PROPERTIES: What are the properties of the solutions?

Perhaps even without finding any solutions can we determine their general behaviour?
How might different solutions be related to each other?

SOLUTION: How can we find the solutions?

(analytical methods, numerical techniques, power-series expansions, etc.)

• The final two questions are the main practical topic to be pursued in the rest of this course. The
first two questions are partly answered by the existence and uniqueness theorem.

1.3.5 Existence and uniqueness

• Theorem: (Existence and Uniqueness)

If f(x, y) and fy(x, y) are continuous functions of x and y in a region 0 < |x − x̄| < a and
0 < |y−ȳ| < b, then there is only one solution y = y(x), defined in some interval 0 < |x−x̄| < h ≤ a,
which satisfies

dy

dx
= f(x, y) with y(x̄) = ȳ.

(fy denotes the partial derivative of f with respect to y.)
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• Higher orders: The theorem can be extended in a straightforward way to an nth order ODE when
n independent constraints (in the form of initial conditions) are required to guarantee existence and
uniqueness.

• Points to note:

– Only local existence and uniqueness are guaranteed for initial value problems.

– The theorem says nothing about global existence or about existence and uniqueness for bound-
ary value problems.

– The existence and uniqueness theorem does not work in reverse. That is there are initial value
problems with unique solutions for which the conditions of the theorem are violated.

1.3.6 Existence and uniqueness for linear ODEs

The existence and uniqueness theorem for linear ODEs has a much stronger form.

• Theorem: (Existence and Uniqueness for Linear ODEs) If p(x) and q(x) are continuous
functions on an interval I, if x̄ ∈ I and if ȳ ∈ R, then there exists a unique solution y = y(x)
throughout the interval I for the ODE

y′ + p(x) y = q(x)

which also satisfies the initial condition
y(x̄) = ȳ.

This solution is a differentiable function and it satisfies the ODE throughout I.

• Higher orders: The theorem can be extended in a straightforward way to an nth order linear
ODE when n independent constraints (in the form of initial conditions) are required to guarantee
existence and uniqueness.


