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MATH10222: SOLUTIONS 1 V

1. Applications of second-order ODEs: “Resonance” or “How to destroy a

coffee mug...”

(a) Consider the mug at an arbitrary time t when its handle is located at x(t) while
the upper end of the rubber string has been moved to x̂(t) = L + A sin(Ωt).
The instantaneous length of the rubber string is l(t) = x̂(t) − x(t) = L +
A sin(Ωt)− x(t) so its change in length (relative to the initial configuration in
which the system is at rest) is ∆l = l(t)−L = A sin(Ωt)−x(t). The force that
the spring exerts onto the mug is therefore given by c∆l = c(A sin(Ωt)− x(t))
(positive if the force acts upwards). Inserting this into Newton’s law (mass
times acceleration is equal to the sum of all forces acting on the mug) yields

mẍ = c
(
A sin(Ωt) − x(t)

)
,

or
m ẍ + c x = cA sin(Ωt),

as required.

(b) At t = 0 the mug is in its initial position and at rest so the initial conditions
are

x(0) = 0 and
dx

dt

∣∣∣∣
t=0

= 0.

Before solving the IVP, we rewrite the ODE in its standard form

ẍ + ω2 x =
cA

m
sin(Ωt) = A ω2 sin(Ωt). (1)

The homogeneous solution of this ODE is given by

xH(t) = B cos(ωt) + C sin(ωt)

for arbitrary constants C and D. [Note: By now you should be so familiar
with this best-known of all 2nd-order ODEs, that you can simply write down
this solution, rather than having to derive it via the characteristic polynomial!]

Since Ω 6= ω and there is no damping, an ansatz of the form xP (t) = E sin(Ωt);
ẍP (t) = −EΩ2 sin(Ωt) for the particular solution should work since all terms
in (1) will vary with sin(Ωt). Indeed, inserting the ansatz into the ODE yields

E sin(Ωt)
(
− Ω2 + ω2

)
= A ω2 sin(Ωt),

so

E = A
ω2

ω2 − Ω2
=

A

1 − (Ω/ω)2
.

The general solution is therefore given by

x(t) = B cos(ωt) + C sin(ωt) +
A

1 − (Ω/ω)2
sin(Ωt).
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Applying the initial condition x(0) = 0 yields B = 0; applying ẋ(0) = 0 gives
the final result

x(t) =
A

1 − (Ω/ω)2

[
sin(Ωt) −

(
Ω

ω

)
sin(ωt)

]
.

Note how the amplitude of the oscillation grows as Ω → ω. We can ensure
the mug’s integrity by choosing the amplitude A such that x(t) > −H. Since
| sin(Ωt) − (Ω/ω) sin(ωt)| < (1 + Ω/ω), this may be achieved by choosing

A < H
1 − (Ω/ω)2

1 + (Ω/ω)
= H

(
1 −

(
Ω

ω

))
.

This shows that if we’re close to resonance Ω ≈ ω, we can only apply a very
small forcing amplitude A if we don’t want the mug to hit the floor.

(c) i. If Ω = ω, the RHS r(t) = ω2 A sin(Ωt) is a solution of the homogeneous
ODE, therefore we have to multiply the naive ansatz for yP , used in the pre-
vious question, by the smallest integer power of the independent variable
t for which it ceases to be a solution of the homogeneous ODE. Multipli-
cation by t does the trick, so we choose

xP (t) = E t sin(ωt).

As observed on a previous example sheet, trigonometric RHSs are best
done by performing the calculation in complex variables. Therefore, we
re-write the ODE (1) as

ẍ + ω2x = A ω2 eiωt,

and only use the imaginary part of the solution. Differentiating the “com-
plexified” ansatz

xP (t) = E t eiωt

yields
ẋP (t) = E (1 + iωt) eiωt,

ẍP (t) = E (2iω − ω2t) eiωt.

Insert into the ODE

E eiωt
(
2iω − ω2t + ω2t

)
= A ω2 eiωt =⇒ E =

A ω2

2iω
= −i

Aω

2
.

Thus

xP (t) = −i
Aω

2
t eiωt = −i

Aω

2
t
(
cos(ωt) + i sin(ωt)

)
.

Extracting the imaginary part of this complex solution and adding the
(unchanged) solution of the homogeneous ODE yields the general solution

x(t) = B cos(ωt) + C sin(ωt) − Aω

2
t cos(ωt)
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for arbitrary constants B and C. Applying the initial conditions yields

x(t) =
A

2

(
sin(ωt) − ω t cos(ωt)

)
.

The mug shatters when x(t) = −H, i.e.

−H =
A

2

(
sin(ωtshatter) − ω tshatter cos(ωtshatter)

)
. (2)

ii. Equation (2) cannot be solved in closed form but zooming in on a plot of
the height of mug above the concrete floor versus time, x(t) + H, for the
parameter values specified in the question shows that the impact occurs
at tshatter ≈ 95.67 sec.
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Figure 1: Zooming into a plot of the mug’s height above floor, x(t) + H, shows that the
impact occurs at tshatter ≈ 95.67 sec for A = 0.01m, H = 1.5m, ω = π sec−1

iii. We can exploit the fact that H � A to obtain an approximation for tshatter

by assessing the size of the various terms in (2). Since the first term in (2)
is bounded, |A/2 sin(ωt)| < A/2, the sum of the two terms on the RHS
of (2) will be dominated by the second term when the mug hits the floor.
Hence we have

H ≈ Aω

2
tshatter cos(ωtshatter)

Since the amplitude of the oscillation doesn’t change much during each
period, the mug is likely to hit the floor close to the instant at which
cos(ωt) has its maximum value so

H ≈ Aω

2
tshatter,

which yields

tshatter ≈
2H

ωA
= 95.49 sec,

accurate to within an error of 0.5%.
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2. Applications of second-order ODEs: The “Dead Cat Bounce”

(a) Fig. 2(a) shows the initial conditions, at the moment of impact: The cat’s
position is

x(t = 0) = 0 (3)

and its initial velocity is
dx

dt

∣∣∣∣
t=0

= v0. (4)

Fig. 2(b) illustrates the forces acting on the cat at an instant when its impact
has moved the floor downwards by x(t): The elastic spring generates an up-
wards force of magnitude c x(t), the damper resists the downward motion with
an upward force of magnitude k dx/dt, and the cat is subject to the (downward)
gravitational force m g. Newton’s law therefore takes the form

m
d2x

dt2
= m g − k

dx

dt
− cx. (5)

m g

x(t=0)=0

k dx(t)/dtc x(t)

x(t) > 0

v0

Rigid foundation

c k

(a) (b)
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Figure 2: Force balance on the dead cat.

(b) The cat is not glued to the floor, so the floor is not able to “pull” the cat
downwards. Hence, when the sum of the forces that the floor exerts on the cat,

Ffloor = k
dx

dt
+ cx,

becomes negative (i.e. if the force has a downward direction), the cat will lift
off the floor and perform a bounce. During the bounce the cat’s motion is
governed by the ODE

d2x

dt2
= g,

and this ODE describes the cat’s motion until it hits the ground again, etc.

(c) Since we’re only trying to find out if the cat bounces, we follow its motion until
the first bounce (if a bounce occurs!). First, we establish that the ODE is valid
at the moment of impact, at t = 0. The cat’s initial position is x(t = 0) = 0
and its initial velocity is dx/dt|t=0 = v0 > 0, so at the moment of impact we
have

Ffloor(t = 0) = k v0 ≥ 0,
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showing that the ODE (5) is valid at t = 0. Does it remain valid for at least
a short while afterwards? To examine this, we use the Taylor expansion of
Ffloor(t) for small times:

Ffloor(t = ∆t) = Ffloor|t=0︸ ︷︷ ︸
k v0

+
dFfloor

dt

∣∣∣∣
t=0

∆t + O(∆t2) for small ∆t, (6)

where

dFfloor

dt

∣∣∣∣
t=0

=

[
d

dt

(
k
dx

dt
+ cx

)] ∣∣∣∣
t=0

= k
d2x

dt2

∣∣∣∣
t=0

+ c
dx

dt

∣∣∣∣
t=0︸ ︷︷ ︸

c v0

.

But what is d2x/dt2|t=0? Since the ODE (5) is valid at t = 0, we can solve it
for d2x/dt2:

d2x

dt2

∣∣∣∣
t=0

= g − k

m

dx

dt

∣∣∣∣
t=0︸ ︷︷ ︸

k

m
v0

− c

m
x

∣∣∣∣
t=0︸ ︷︷ ︸

0

,

so

Ffloor(t = ∆t) = kv0 +

[
kg + v0

(
c − k2

m

) ]
∆t + O(∆t2).

This shows that for k > 0, the floor initially exerts an upward force onto the
cat. Depending on the sign of the term in the square brackets this force either
increases or decreases. However, even if the term is very large and negative,
we can always choose a sufficiently small value of ∆t to ensure that Ffloor ≥ 0
for 0 < t < ∆t, showing that the ODE remains valid for a short while after the
cat’s initial impact.

If k = 0 (no damping), we have Ffloor(t = 0) = 0 and dFfloor/dt|t=0 > 0,
so the force is initially zero and then increases. Hence Ffloor again remains
non-negative, at least for a short period after the cat’s initial impact.

Common sense comment: This should all make perfect sense when you
think about the mechanics of the problem: At t = 0 the cat has a fi-
nite downward velocity. Following the impact, the cat is being decelerated
but its velocity is not going to reverse instantly. Hence the cat will con-
tinue to move downwards (creating an upward force from the damper) and
thus depress the spring (creating an upward force from the spring). Hence,
the resultant force Ffloor acts upwards too and the ODE is valid.

(d) We re-write the ODE in its standard form

d2x

dt2
+ 2δ

dx

dt
+ ω2x = g, (7)

where

δ =
k

2m
and ω2 =

c

m
.

Assuming that δ2 < ω2, the homogeneous solution is given by

xH(t) = e−δt (A cos(Ωt) + B sin(Ωt))
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where we have used the shorthand

Ω =
√

ω2 − δ2.

A particular solution for the ODE (7) is given by

xP =
g

ω2
=

mg

c
,

which represents the cat’s ultimate equilibrium position (i.e. the position it
ends up in when all the bouncing is done...). In this configuration, the cat’s
weight (a downward force of magnitude mg) is balanced by the spring force
(an upward force of magnitude xP c).

Applying the initial conditions (3) and (4) to x(t) = xP (t) + xH(t) yields

A = − g

ω2

and

B =
v0 − δg/ω2

Ω
.

Here is a particularly neat way of writing the solution:

x(t) =
g

ω2

(
1 + e−δt

(
− cos(Ωt) +

v0ω/g − δ/ω

Ω/ω
sin(Ωt)

))
(8)

(e) Figs. 3 and 4 show plots of x(t) and Ffloor(t) for v0 = 10 m/sec, g = 9.81 m/sec2,
ω = π sec−1 and δ = 0, 1, 2, 3 sec−1. An increase in damping increases the rate
at which the oscillations decay. For sufficiently large δ, Ffloor remains positive
for all t and the cat doesn’t bounce.
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Figure 3: The cat’s trajectory for v0 = 10 m/sec, g = 9.81 m/sec2, ω = π sec−1 and
δ = 0, 1, 2, 3 sec−1. The solution is only valid until Ffloor(t) < 0 for the first time; see Fig.
4.
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Figure 4: The force exerted by the floor onto the cat, Ffloor(t) for v0 = 10 m/sec, g =
9.81 m/sec2, ω = π sec−1 and δ = 0, 1, 2, 3 sec−1. The solution is only valid until Ffloor(t) <
0 for the first time.
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(f) If there’s no damping (δ = 0, which implies Ω = ω), equation (8) simplifies to

x(t) =
g

ω2

(
1 +

v0ω

g
sin(ωt) − cos(ωt)

)

and
Ffloor = c x,

so
Ffloor

mg
= 1 − cos(ωt) +

v0 ω

g
sin(ωt),

where have used the fact that ω2 = c/m. This function changes sign when
the two curves 1 − cos(ωt) and −Λ sin(ωt) (where Λ = v0 ω

g
> 0) intersect.

Sketching these curves (see Fig. 5) shows that this occurs (regardless of the
value of Λ > 0) in the range π/ω < t < 2π/ω, so the cat will definitely bounce.
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Figure 5: In the absence of damping (δ = 0), the intersection between the curves
1 − cos(ωt) and −Λ sin(ωt) determines the instant at which Ffloor changes sign. The
intersection always exists so the cat always bounces. (Sketch for ω = π and Λ = 1.3).
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3. Motivating the use of scaling arguments to simplify ODEs

We know that, following the decay of the transient solution, the solution of

m
d2x

dt2
+ k

dx

dt
+ cx = F cos(Ωt) (9)

is given by
xP (t) = A cos(Ωt) + B sin(Ωt).

We wish to determine an approximate solution for xP (t) that is appropriate in the
limit of “large” Ω. Let’s examine the relative sizes of the various terms in (9):

dxP (t)

dt
= Ω

(
− A sin(Ωt) + B cos(Ωt)

)

and
d2xP (t)

dt2
= −Ω2

(
A cos(Ωt) + B sin(Ωt)

)
.

As Ω grows, the “inertial term” m d2x/dt2 is therefore likely to dominate the other
two terms on the LHS of (9), suggesting that the simplified ODE

m
d2x

dt2
= F cos(Ωt) (10)

should provide a good approximation of the system’s behaviour for large Ω. The
simplified ODE (10) can be integrated twice, yielding

xP (t) = − F

mΩ2
cos(Ωt).

The exact solution is given by

xP (t) = A cos(Ωt) + B sin(Ωt),

where

A = F
c − mΩ2

(kΩ)2 + (c − mΩ2)2
=

F

mΩ2

c
mΩ2 − 1

(
k

mΩ

)2
+

(
c

mΩ2 − 1
)2

and

B = F
kΩ

(kΩ)2 + (c − mΩ2)2
=

F

mΩ2

k
mΩ(

k
mΩ

)2
+

(
c

mΩ2 − 1
)2

.

Hence

lim
Ω→∞

xP (t) =
F

mΩ2

(
− cos(Ωt) + O

(
1

Ω

))
,

in agreement with the solution obtained from the simplified ODE.


