
MATH10222 – http://www.maths.man.ac.uk/~ mheil/Lectures/FirstYearODEs 1

MATH10222: SOLUTIONS TO EXAMPLE SHEET1

III

1. Existence and uniqueness for linear second-order ODEs

(a) Rewrite the ODE
x2 y′′ − 2 x y′ + 2 y = 0

in its standard form y′′ + p(x) y′ + q(x) y = r(x),

y′′ − 2
1

x
y′ + 2

1

x2
y = 0.

The coefficients p(x) = −2/x, q(x) = 2/x2 and r(x) = 0 are continuous in the
interval I = {x | 0 < x} that contains the point x = 1 at which the initial
condition is specified. Hence a unique solution for the initial value problem
exists for all x ∈ I. Some of the coefficients are singular at x = 0, so it is not
certain that it will be possible to extend the solution across this point. In fact,
we will see in question 2a that the solution is singular at x = 0. Note that
we already had to exclude the case x = 0 when transforming the ODE into its
standard form, as its highest derivative vanishes at this point – this is always
“a sign of trouble”.

(b) The ODE

ẍ − 2
1

t
ẋ + 2

1

t2
x = 0

is already in its standard form which is the same as that in the previous exam-
ple. Here the initial conditions are applied at t = −1 so a unique solution for
the initial value problem is guaranteed to exist in the interval I = {x | x < 0}.

(c) The ODE
ÿ + Ω2 y = 0

is already in its standard form. Its coefficients are constants and are therefore
continuous for t ∈ R so a unique solution for the initial value problem exists
t ∈ I = R.

Given that the ODE and the boundary conditions are homogeneous, the unique
solution of the initial value problem is obviously y ≡ 0.

(d) Clearly, the function y ≡ 0 is also a solution of the boundary value problem

ÿ + Ω2 y = 0,

subject to
y(t = 0) = 0 and y(t = 1) = 0.

However, the solution y ≡ 0 is not necessarily unique as, for certain values of
Ω, additional solutions exist: If Ω = Ωj = jπ (where j = 0, 1, ...) the functions
yj(t) = A sin(Ωt), where A is an arbitrary constant, also satisfy the ODE
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and the boundary conditions. These functions are known as eigenfunctions,
and the corresponding values of Ω as eigenvalues. Note the similarity with
eigenvectors/eigenvalues in linear algebra. Eigenvalue problems for ODEs will
be explored in more detail in the second year.

2. Linear and nonlinear second-order ODEs

(a)
t2 ÿ − 2 t ẏ + 2 y = 0

• Show that y1(t) = t is a solution:

ẏ1 = 1, ÿ1 = 0.

Substitute into the ODE:

t2 × 0 − 2 t × 1 + 2 × t = −2 t + 2 t = 0 q.e.d.

• Show that y2(t) = t2 is a solution:

ẏ1 = 2 t, ÿ1 = 2.

Substitute into the ODE:

t2 × 2 − 2 t × 2 t + 2 × t2 = 2 t2 − 4 t2 + 2 t2 = 0 q.e.d.

• =⇒ y1(t) and y2(t) are nonzero solutions of the linear ODE. Are they
linearly independent? Check by examining if

A y1(t) + B y2(t) = 0 ∀t

requires A ≡ B ≡ 0.
A t + B t2 = 0 ∀t

Evaluating this at t = 1 =⇒ A+B = 0; evaluating at t = 2 =⇒ 2A+4B =
0. Inserting A = −B from the first constraint into the second one gives
B = A = 0, so the two solutions are linearly independent.

• Since the ODE is homogeneous and linear, and since y1(t) and y2(t) are
two nonzero, linearly independent solutions, the general solution of the
ODE is given by

y(t) = A t + B t2.

(b)
y ÿ − (ẏ)2 = 0

• Show that y1(t) = et is a solution:

ẏ1 = et, ÿ1 = et.

Substitute into the ODE:

et et − e2t = 0 q.e.d.
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• Show that y2(t) = e2 t is a solution:

ẏ1 = 2 e2 t, ÿ1 = 4 e2 t.

Substitute into the ODE:

e2 t 4 e2 t − (2 e2 t)2 = 4 e2 t − 4 e2 t = 0. q.e.d.

• ...but y = A et + B e2 t is not a solution:

(A et + B e2 t) (A et + 4 B e2 t) − (A et + 2 B e2 t)2

= A2 e2 t + 5 A B e3 t + 4 B2 e4 t − A2 e2 t − 4 A B e3 t − 4 B2 e4 t

= A B e3 t 6= 0

A y1(t) + B y2(t) is not a solution because the ODE is nonlinear.

(c) We know that
y′′

1 + p(x) y′
1 + q(x) y1 = 0,

and
y′′

2 + p(x) y′
2 + q(x) y2 = 0.

Substitute A y1(x) + B y2(x) into the ODE and re-arrange, using the linearity
of the differentiation:

(
A y1 + B y2

)′′
+ p(x)

(
A y1 + B y2

)′
+ q(x)

(
A y1 + B y2

)
= 0,

(
A y′′

1 + B y′′
2

)
+ p(x)

(
A y′

1 + B y′
2

)
+ q(x)

(
A y1 + B y2

)
= 0,

A
(
y′′

1 + p(x) y′
1 + q(x) y1

)
︸ ︷︷ ︸

=0

+B
(
y′′

2 + p(x) y′
2 + q(x) y2

)
︸ ︷︷ ︸

=0

= 0,

0 = 0 q.e.d.

3. Homogeneous linear ODEs with constant coefficients

(a) ÿ − 5 ẏ + 4 y = 0

• Characteristic equation λ2 − 5 λ + 4 = 0 =⇒ λ = 1, 4.

• The general solution is
y = C et + D e4 t.

• Initial conditions: y(0) = 0, ẏ(0) = 1

ẏ = C et + 4 D e4 t

so {
y(0) = C + D = 0
ẏ(0) = 4 D + C = 1

=⇒
{

D = −C
−3 C = 1

=⇒
{

C = −1
3

D = 1
3

• The required solution is

y =
1

3
(e4 t − et).
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(b) ÿ + 4 y = 0

• Characteristic equation λ2 + 4 = 0 =⇒ λ = ±2 i.

• The general solution is:

– Complex form: y = C ei2t + D e−i2t.

– Real form: y = A cos 2t + B sin 2t.

• Initial conditions: y(0) = 1, ẏ(0) = 0

ẏ = −2 A sin 2t + 2 B cos 2t

so {
y(0) = A = 1
ẏ(0) = 2 B = 0

• The required solution is
y = cos 2t.

(c) ÿ − y = 0

• Characteristic equation λ2 − 1 = 0 =⇒ λ = ±1.

• The general solution is
y = C et + D e−t.

• Initial conditions: y(0) = 1, ẏ(0) = 0

ẏ = C et − D e−t

so {
y(0) = C + D = 1
ẏ(0) = C − D = 0

=⇒
{

C = 1
2

D = 1
2

• The required solution is

y =
1

2
(et + e−t) = cosh t.

(d) ÿ + 4 ẏ + 4 y = 0

• Characteristic equation λ2 + 4 λ + 4 = 0 =⇒ λ1,2 = −2 (repeated
root!)

• The general solution is

y = (C + D t) e−2 t.

• Initial conditions: y(0) = 1, ẏ(0) = −2

ẏ = D e−2 t − 2 (C + D t) e−2 t

so {
y(0) = C = 1
ẏ(0) = D − 2 C = −2

=⇒
{

C = 1
D = 0

• The required solution is
y = e−2 t.
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(e) ÿ − 2 ẏ + 3 y = 0

• Characteristic equation λ2 − 2 λ + 3 = 0 =⇒ λ = 1 ± i
√

2.

• The general solution is

– Complex form: y = C e(1+i
√

2) t + D e(1−i
√

2) t,

– Real form: y = et
(
A cos(

√
2t) + B sin(

√
2t)

)
.

• Initial conditions: y(0) = 0, ẏ(0) =
√

2

ẏ = et
(
A cos(

√
2t) + B sin(

√
2t)

)
+ et

(
−

√
2A sin(

√
2t) +

√
2B cos(

√
2t)

)

= et
(
(A +

√
2B) cos(

√
2t) + (B −

√
2A) sin(

√
2t)

)

so {
y(0) = A = 0

ẏ(0) = (A +
√

2B) =
√

2
=⇒

{
A = 0
B = 1

• The required solution is
y = et sin(

√
2t).

(f) ÿ = 0

• Characteristic equation: λ2 = 0 =⇒ λ1,2 = 0 (repeated root!)

• The general solution is

y = (C + D t) e0×t = C + D t.

[We could, of course, have obtained this solution directly by integrating
the ODE twice.]

• Initial conditions: y(0) = 1, ẏ(0) = −2

ẏ = D

so {
y(0) = C = 1
ẏ(0) = D = −2

=⇒
{

C = 1
D = −2

• The required solution is
y = 1 − 2 t.

4. The real form of the fundamental solutions in the case of complex con-

jugate roots of the characteristic polynomial

We know that the general solution

y(x) = eµx
(
Â eiωx + B̂ e−iωx

)

is real.

Â eiωx + B̂ e−iωx = (α + iβ) eiωx + (γ + iδ) e−iωx

= (α + iβ)
(
cos(ωx) + i sin(ωx)

)
+ (γ + iδ)

(
cos(ωx) − i sin(ωx)

)

=
(
α cos(ωx) − β sin(ωx) + γ cos(ωx) + δ sin(ωx)

)
+

i
(
β cos(ωx) + α sin(ωx) + δ cos(ωx) − γ sin(ωx)

)



MATH10222 – http://www.maths.man.ac.uk/~ mheil/Lectures/FirstYearODEs 6

The imaginary part of this expression only vanishes if

δ = −β and γ = α.

Use this to re-write the real part:

Â eiωx + B̂ e−iωx = (α + γ) cos(ωx) − (β − δ) sin(ωx)

= 2α cos(ωx) − 2β sin(ωx),

so
y(x) = eµx (A cos(ωx) + B sin(ωx))

(setting A = 2α and B = −2β), as claimed in the lecture.

5. The form of the solution for repeated roots – “reduction of order”

Try y2(t) = g(t) y1(t) = g(t) e−k t as an ansatz for the second solution. The deriva-
tives are given by

ẏ2 = ġ(t) e−kt − k g(t) e−k t,

ÿ2 = e−k t (g̈(t) − 2 k ġ(t) + k2 g(t)).

Substituting this into the ODE and cancelling the common factor e−k t yields

g̈(t) − 2 k ġ(t) + k2 g(t) + 2 k (ġ(t) − k g(t)) + k2 g(t) = 0.

Most terms cancel leaving
g̈(t) = 0,

so g(t) = A+B t, where A and B are arbitrary constants. Hence, a second solution
of the ODE is given by

y2(t) = (A + B t) e−k t

for any value of the constants A and B.

Note, however, that we want y1(t) and y2(t) to be fundamental solutions of the ODE.
This requires the two functions to be nonzero and linearly independent, ruling out
certain combinations of A and B. For instance, A = B = 0 is not a sensible choice
as it produces the trivial solution, y2 ≡ 0. Equally, if we set B = 0, y1(t) and y2(t)
are simply multiples of each other and therefore linearly dependent. The easiest
way to construct a second fundamental solution is to do what we did in the lecture,
namely set A = 0 and B = 1, yielding the set of fundamental solutions

{
e−k t, t e−k t

}
,

implying that any solution of the ODE can be written as

y(t) = C e−k t + D t e−k t (1)

for arbitrary constants C and D.

However, other choices are possible too. For instance,

{
e−k t, (1 + t) e−k t

}
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is another set of fundamental solutions, illustrating the statement made in the lec-
ture that the set of fundamental solutions is not unique.

To show that the two sets of fundamental solutions are equivalent, we use the second
set to write the general solution y(t) as

y(t) = E e−k t + F (1 + t) e−k t (2)

for arbitrary constants E and F . Are the two representations (1) and (2) equivalent?
Check by equating them:

C e−k t + D t e−k t = E e−k t + F (1 + t) e−k t

(C − E − F ) e−k t + (D − F ) t e−k t = 0

Since e−k t and t e−k t are linearly independent this requires D = F and E = C−F =
C − D. Hence any solution y(t) that is represented by (1) with constants C and D
can be represented by (2) with coefficients F = D and E = C − D.


