MATH10222: SOLUTIONS TO EXAMPLE SHEET ${ }^{1}$ I

1. Classifying ODEs

(a) Nonlinear because of the squared u in the second term on the LHS.

Non-autonomous because the indepdendent variable, x, appears explicitly (on the RHS).
First order because the highest derivative of the unknown function with respect to the independent variable is $u^{\prime}(x)$ - a first derivative.
(b) Linear because the ODE is linear in the unknown function, u, and its derivatives.

Non-autonomous because the indepdendent variable, t, appears explicitly (in the term multiplying $u(t)$ on the LHS).
Fourth order because the highest derivative of the unknown function with respect to the independent variable is $d^{4} u / d t^{4}$ - a fourth derivative.
(c) Nonlinear because the ODE involves the sin of the unknown function, $\theta(t)$.

Autonomous because the independent variable, t, does not appear explicitly.
Second order because the highest derivative of the unknown function with respect to the independent variable is $\ddot{\theta}-\mathrm{a}$ second derivative.

2. Properties of ODEs

(a) False. $\left(\frac{\mathrm{d} \phi}{\mathrm{d} s}\right)^{2}=2 s \phi$ is a first order ODE. The highest derivative of the unknown function with respect to the independent variable is $\frac{\mathrm{d} \phi}{\mathrm{d} s}$ - a first derivative.
(b) False. $u^{\prime \prime}$ and u^{\prime} are evaluated at different values of the indepdendent variable, namely at x and at $x-1$, respectively, so $u^{\prime \prime}(x)+u^{\prime}(x-1)=1$ is not an ODE. (It's a delay differential equation - a different beast altogether).
(c) False. $\frac{\mathrm{d} x}{\mathrm{~d} y}+5 y^{2} x=0$ is a linear ODE for $x(y)$.
(d) False. One solution of $y^{\prime 2}+y^{2}=0$ is $y(x)=0$.
(e) False. $t^{2} \frac{\mathrm{~d}^{2} t}{\mathrm{~d} z^{2}}+2 t \frac{\mathrm{~d} t}{\mathrm{~d} z}+2 t=0$ is an ODE for $t(z)$ and the indepdent variable, z does not occur explicitly.

3. Solutions of ODEs; Boundary and Initial Value Problems

 If$$
y=A_{1} e^{x}+A_{2}(1+x),
$$

then

$$
y^{\prime}=A_{1} e^{x}+A_{2}
$$

and

$$
y^{\prime \prime}=A_{1} e^{x} .
$$

Inserting this into the ODE $x y^{\prime \prime}-(1+x) y^{\prime}+y=0$ gives

$$
x A_{1} e^{x}-(1+x)\left(A_{1} e^{x}+A_{2}\right)+A_{1} e^{x}+A_{2}(1+x)=0 .
$$

The terms cancel and we obtain $0=0$, so $y=A_{1} e^{x}+A_{2}(1+x)$ is a solution of the ODE.

[^0](a) $y(0)=A_{1}+A_{2}=1$ and $y(1)=A_{1} e+2 A_{2}=1 \Longrightarrow A_{1}=\frac{-1}{e-2}$ and $A_{2}=\frac{e-1}{e-2}$.
(b) $y(1)=A_{1} e+2 A_{2}=0$ and $y^{\prime}(2)=A_{1} e^{2}+A_{2}=0 \Longrightarrow A_{1}=0$ and $A_{2}=0$.
(c) $y^{\prime}(1)=A_{1} e+A_{2}=e$ and $y^{\prime}(1)=e=y(1)=A_{1} e+2 A_{2} \Longrightarrow A_{1}=1$ and $A_{2}=0$

Cases (a) and (b) are boundary value problems and (c) is an initial value problem.

[^0]: ${ }^{1}$ Any feedback to: M.Heil@maths.man.ac.uk

