MATH10222: SOLUTIONS TO EXAMPLE SHEET ${ }^{1}$ 0

1. Integration as the inversion of differentiation

(a) The derivative of

$$
y_{1}(x)=\sin (x)
$$

is (obviously!)

$$
\frac{d y_{1}}{d x}=\cos (x)
$$

and this answer is unique. Geometrically, this is because the slope of the (smooth) function $\sin (x)$ is unique.
(b) Given the derivative of $y_{2}(x)$ as

$$
\frac{d y_{2}}{d x}=\cos (x)
$$

the function $y_{2}(x)$ itself may be obtained by straightforward integration:

$$
\begin{gathered}
\int \frac{d y_{2}}{d x} d x=\int \cos (x) d x \\
y_{2}(x)=\sin (x)+C
\end{gathered}
$$

where C is the (arbitrary!) constant of integration. The answer to the question is therefore not unique. There are infinitely many functions whose slope is given by $\cos (x)$. The functions differ by constants.
(c) Given the second derivative of $y_{3}(x)$ as

$$
\frac{d^{2} y_{3}}{d x^{2}}=-\sin (x)
$$

we may again obtain the function $y_{3}(x)$ by integration:

$$
\begin{gathered}
\int \frac{d^{2} y_{3}}{d x^{2}} d x=\int-\sin (x) d x \\
\frac{d y_{3}}{d x}=\cos (x)+C
\end{gathered}
$$

where C is an arbitrary constant of integration. Applying this procedure again yields

$$
\begin{gathered}
\int \frac{d y_{3}}{d x} d x=\int(\cos (x)+C) d x \\
y_{3}(x)=\sin (x)+C x+D
\end{gathered}
$$

where D is another arbitrary constant of integration.

[^0]The answer to the question is therefore not unique. This is because we were given the second derivative of $y_{3}(x)$ and therefore had to integrate twice to obtain the function itself. In the process two constants of integration were introduced. Compared to the (arguably) simplest solution $y_{3}(x)=\widehat{y_{3}}(x)=$ $\sin (x)$, the other solutions may be obtained by

- adding arbitrary constants, and/or
- adding arbitrary multiples of the function $y(x)=x$.

2. Ordinary Differential Equations (ODEs) as relations between a function and its derivatives

(a) You should know that the derivative of $y(x)=\exp (x)$ is $y^{\prime}(x)=\exp (x)=y(x)$ again, so $y_{4}(x)=\exp (x)$ is a solution of

$$
\frac{d y_{4}}{d x}=y_{4}(x) .
$$

However, this is clearly not the only solution as any multiple of $\exp (x)$ also satisfies the above equation. The answer is therefore not unique. We will soon show that

$$
y_{4}(x)=A \exp (x)
$$

where A is an arbitrary constant is, in fact, the most general solution.
(b) You should know that the second derivative of $y(x)=\cos (x)$ is $y^{\prime \prime}(x)=$ $-\cos (x)=-y(x)$ so $y_{5}(x)=\cos (x)$ is a solution of

$$
\frac{d^{2} y_{5}}{d x^{2}}=-y_{5}(x) .
$$

As in the previous question, it should be obvious that this solution is not unique, as $y_{5}(x)=A \cos (x)$ also solves the above equation for any value of the constant A. Furthermore, exactly the same arguments also apply to $y(x)=$ $\sin (x)$, so an even more general solution is given by

$$
y_{5}(x)=A \cos (x)+B \sin (x),
$$

where A and B are arbitrary constants. We will soon show that this is, in fact, the most general solution.

[^0]: ${ }^{1}$ Any feedback to: M.Heil@maths.man.ac.uk

