Some theory linear 2nd order ODEs

Existence and Uniqueness

Consider the linear second-order ODE

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x) \tag{1}
\end{equation*}
$$

subject to the initial conditions

$$
\begin{equation*}
y(X)=Y, \quad y^{\prime}(X)=Z \tag{2}
\end{equation*}
$$

where the constants X, Y and Z, and the functions $p(x)$, $q(x)$ and $r(x)$ are given.

Theorem

If the functions $p(x), q(x)$ and $r(x)$ are continuous functions of x in an interval I, and if $X \in I$ then there exists exactly one solution to the initial value problem defined by (1) and (2) in the entire interval I.

Notes:

- This is the promised extension of the statement for first-order problems. The extension to even higher-order linear ODEs should be obvious...
- If the functions $p(x), q(x)$ and $r(x)$ are "well-behaved" (no jumps, singularities, etc.), the theorem guarantees the existence of a unique solution for $x \in \mathbb{R}$.
- However, the statement still only applies to initial value problems!

The homogeneous ODE \& superposition of its solutions

If we set $r(x)=0$ in the inhomogeneous ODE

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x) \tag{I}
\end{equation*}
$$

we obtain the corresponding homogeneous ODE

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{H}
\end{equation*}
$$

A trivial (?) but useful observation

If $y_{1}(x)$ and $y_{2}(x)$ are two solutions of (H) then the linear combination

$$
y_{3}(x)=A y_{1}(x)+B y_{2}(x)
$$

is also a solution, for any values of the constants A and B.

Linear independence

To see why this is a useful observation, we need to define the concept of linear independence: Two nonzero functions $y_{1}(x)$ and $y_{2}(x)$ are linearly independent if

$$
A y_{1}(x)+B y_{2}(x)=0 \quad \forall x \quad \Longleftrightarrow \quad A \equiv B \equiv 0
$$

(...just as in linear algebra...).

Examples:

- $y_{1}(x)=x$ and $y_{2}(x)=3 x^{2}$ are linearly independent.
- $y_{1}(x)=x$ and $y_{2}(x)=3 x$ are linearly dependent - they're just multiples of each other.

Fundamental solutions of the homogeneous ODE

Theorem

Any solution of the homogeneous ODE

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0 \tag{H}
\end{equation*}
$$

can be written as a linear combination of any two non-zero, linearly independent solutions, $y_{1}(x)$ and $y_{2}(x)$, say:

$$
y(x)=A y_{1}(x)+B y_{2}(x) .
$$

The two non-zero, linearly independent solutions $\left\{y_{1}(x), y_{2}(x)\right\}$ are called "fundamental solutions" of the homogeneous ODE (H).

Notes:

- The set of fundamental solutions is not unique!

The general solution of the inhomogeneous ODE

Theorem

The general solution of the inhomogeneous ODE

$$
\begin{equation*}
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=r(x) \tag{I}
\end{equation*}
$$

can be written as

$$
y(x)=y_{p}(x)+A y_{1}(x)+B y_{2}(x)
$$

where:

- A and B are arbitrary constants.
- $y_{p}(x)$ is any particular solution of the inhomogeneous ODE.
- $y_{1}(x)$ and $y_{2}(x)$ are fundamental solutions of the corresponding homogeneous ODE.

Notes:

- Note the similarities between the structure of the solution of the linear ODE and the structure of the solution of the linear (algebraic) equation $\mathbf{A x}=\mathbf{b}$. This is not accidental! There are deep connections between the two fields - matrices and the homogeneous part of a linear ODE are both "linear operators".
- The values of the constants A and B are determined by the boundary or initial conditions.

