"Multinomial expansions"

- One tedious task that one tends to face regularly when using perturbation methods is that of raising a power series in ϵ to some integer power

$$
\begin{equation*}
S=\left(x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\ldots\right)^{n} \tag{1}
\end{equation*}
$$

and collecting the terms multiplied by the same power of ϵ, i.e. re-writing S in the form

$$
\begin{equation*}
S=S_{0}\left(x_{0}\right)+\epsilon S_{1}\left(x_{0}, x_{1}\right)+\epsilon^{2} S_{2}\left(x_{0}, x_{1}, x_{2}\right)+\ldots \tag{2}
\end{equation*}
$$

where the functions $S_{i}\left(x_{0}, x_{1}, \ldots\right)$ do not depend on ϵ.

- Formally, the expansion of S may be obtained by using the "multinomial series" (a generalisation of the binomial series) as

$$
\left(a_{1}+a_{2}+\ldots+a_{k}\right)^{n}=\sum_{\substack{n_{1}, n_{2}, n_{3}, \ldots, n_{k} \in \mathbb{N}_{0} \\ n_{1}+n_{2}+\ldots+n_{k}=n}} \frac{n!}{n_{1}!n_{2}!\ldots n_{k}!} a_{1}^{n_{1}} a_{2}^{n_{2}} \ldots a_{k}^{n_{k}}
$$

see, e.g. http://mathworld.wolfram.com/MultinomialSeries.html

- However, we usually only need the first few terms in (2) for low-ish powers of n. Here they are:

$$
\begin{aligned}
& \left(x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\ldots\right)^{2}=\left(x_{0}^{2}\right)+\epsilon\left(2 x_{0} x_{1}\right)+\epsilon^{2}\left(x_{1}^{2}+2 x_{0} x_{2}\right)+\ldots \\
& \left(x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\ldots\right)^{3}=\left(x_{0}^{3}\right)+\epsilon\left(3 x_{0}^{2} x_{1}\right)+\epsilon^{2}\left(3 x_{0} x_{1}^{2}+3 x_{0}^{2} x_{2}\right)+. \\
& \left(x_{0}+\epsilon x_{1}+\epsilon^{2} x_{2}+\ldots\right)^{4}=\left(x_{0}^{4}\right)+\epsilon\left(4 x_{0}^{3} x_{1}\right)+\epsilon^{2}\left(4 x_{0}^{3} x_{2}+6 x_{0}^{2} x_{1}^{2}\right)+.
\end{aligned}
$$

- Exercise: Convince yourself that you understand how these terms arise. Hint: Either use the multinomial series given above, or write S explicitly as a product of n power series [e.g. for $\left.n=2: S=\left(x_{0}+\epsilon x_{1}+\ldots\right)\left(x_{0}+\epsilon x_{1}+\ldots\right)\right]$ and inspect which combination of terms gives rise to what powers of ϵ.
- Relax! In an exam these expressions would be provided!

