
“Multinomial expansions”

• One tedious task that one tends to face regularly when using

perturbation methods is that of raising a power series in ε to

some integer power
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and collecting the terms multiplied by the same power of ε, i.e.

re-writing S in the form

S = S0(x0) + ε S1(x0, x1) + ε2 S2(x0, x1, x2) + ... (2)

where the functions Si(x0, x1, ...) do not depend on ε.

• Formally, the expansion of S may be obtained by using the

“multinomial series” (a generalisation of the binomial series)

as
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see, e.g. http://mathworld.wolfram.com/MultinomialSeries.html

• However, we usually only need the first few terms in (2) for

low-ish powers of n. Here they are:
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• Exercise: Convince yourself that you understand how these

terms arise. Hint: Either use the multinomial series given

above, or write S explicitly as a product of n power series [e.g.

for n = 2 : S = (x0 + ε x1 + ...)(x0 + ε x1 + ...)] and inspect

which combination of terms gives rise to what powers of ε.

• Relax! In an exam these expressions would be provided!


