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Figure 1: Illustration of a purely damped motion. The mass approaches its equilibrium
position x = 0 monotonically.
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Figure 2: Illustration of critically damped motions. The mass approaches its equilibrium
position, x = 0, with at most one “overshoot”.
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Figure 3: Illustration of a damped oscillation. The mass oscillates about its equilibrium
position x = 0 and the amplitude of the oscillations decays exponentially.
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Figure 4: Illustration of an undamped oscillation. The mass performs harmonic oscilla-
tions about its equilibrium position x = 0.
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Figure 5: The displacement of a harmonically-forced, damped mechanical oscillator com-
prises the periodic (forced) solution xP (t) and the transient solution xH(t).


