INTRODUCTION

Notation, Definitions and "What are the issues?"

The Derivative

Given a function

$$
y(x)
$$

where

- x is the independent variable,
- y is the dependent variable,
the derivative is defined as

$$
\begin{aligned}
y^{\prime}(x)=\frac{d y}{d x} & =\lim _{h \rightarrow 0} \frac{y(x+h)-y(x)}{h} \\
& =\lim _{h \rightarrow 0} \frac{y(x)-y(x-h)}{h} .
\end{aligned}
$$

The derivative is not defined at points where the "right" and "left" limits do not converge to the same value. For instance, $y(x)=|x|$ does not have a derivative at $x=0$.

Higher Derivatives

Higher derivatives are defined recursively

$$
\begin{aligned}
& y^{\prime \prime}(x)=\frac{d^{2} y(x)}{d x^{2}}=\frac{d}{d x}\left(\frac{d y(x)}{d x}\right) \\
& y^{\prime \prime \prime}(x)=\frac{d^{3} y(x)}{d x^{3}}=\frac{d}{d x}\left(\frac{d^{2} y(x)}{d x^{2}}\right) \\
& \text { etc. }
\end{aligned}
$$

...provided the lower-order derivatives are sufficiently smooth for the higher derivatives to exist.

Notation

- Dash notation:

$$
\begin{aligned}
\frac{d}{d x}(.) & =(.)^{\prime} \\
\frac{d^{2}}{d x^{2}}(.) & =(.)^{\prime \prime} \\
\frac{d^{n}}{d x^{n}}(.) & =(.)^{(n)}
\end{aligned}
$$

- Dot notation: For time-dependent problems, where t is the independent variable, dots are often used to indicate derivatives.

$$
\begin{gathered}
x(t) \\
\frac{d x}{d t}=\dot{x}(t) \\
\frac{d^{2} x}{d t^{2}}=\ddot{x}(t)
\end{gathered}
$$

- The dependence on the independent variable may be suppressed. For instance, instead of

$$
y^{\prime}(x)+p(x) y(x)=r(x)
$$

we can simply write

$$
y^{\prime}+p(x) y=r(x)
$$

because it's "obvious" that y is a function of x.

Ordinary differential equations

Definition:

- An n-th order ordinary differential equation (ODE) for $y(x)$ has the general form

$$
\begin{equation*}
\mathcal{F}\left(x, y(x), y^{\prime}(x), \ldots, y^{(n)}(x)\right)=0 \tag{1}
\end{equation*}
$$

i.e. it relates the (unknown) function, $y(x)$ to x and its 1st, $2 \mathrm{nd}, \ldots, n$th derivatives.

- Often the implicit form given above can be solved for $y(x)$, allowing the ODE to be written in explicit form as:

$$
\begin{equation*}
y^{(n)}(x)=f\left(x, y(x), y^{\prime}(x), \ldots, y^{(n-1)}(x)\right) \tag{2}
\end{equation*}
$$

Solutions:

- A solution of the ODE (1) [or (2)] in an interval

$$
I=\{x \mid a<x<b\}
$$

is any function $\phi(x)$ for which

$$
\begin{equation*}
\mathcal{F}\left(x, \phi(x), \phi^{\prime}(x), \ldots, \phi^{(n)}(x)\right)=0 \quad \forall x \in I \tag{3}
\end{equation*}
$$

Notes:

- The statement already suggests that there may be multiple solutions.
- Furthermore, solutions might not exist for all values of x.
- In fact, there might not be a solution at all!

Two properties worth looking out for...

1. Linearity

- An ODE is linear if

$$
\mathcal{F}\left(x, y(x), y^{\prime}(x), \ldots, y^{(n)}(x)\right)=0
$$

is linear in y and all its derivatives.

- Linear ODEs can be written as

$$
a_{n}(x) y^{(n)}+a_{n-1}(x) y^{(n-1)}+\cdots+a_{1}(x) y^{\prime}+a_{0}(x) y=b(x)
$$

where $a_{i}(x)(i=0, \ldots, n)$ and $b(x)$ are given functions.

2. Autonomous ODEs

- An ODE is autonomous if it has the form

$$
\mathcal{F}\left(y(x), y^{\prime}(x), \ldots, y^{(n)}(x)\right)=0
$$

i.e. if the independent variable, x, does not appear explicitly.

