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MATH10222: EXAMPLE SHEET1 V

Questions for supervision classes

Hand in the solutions to questions 1a,b,c(i,ii) and 3. Dis-
cuss any problems with your supervisor. The remaing
questions are more advanced (and therefore more inter-
esting!). If you like mechanics, have a go at them too –
make sure you follow the hints!

1. Applications of second-order ODEs: “Resonance” or “How to destroy a

coffee mug...”

Concrete floor

H

m

c
x(t)

L

To demonstrate the phenomenon of resonance your lecturer takes his coffee mug
(mass m) to the lecture theatre and suspends it from a piece of rubber string (spring
stiffness c). Fig. 1 shows the initial configuration: The mug is at rest, the point at
which the rubber string is attached to its handle is located at x = 0, and the upper
end of the rubber string is located at x = L. The lowest point of the (fragile and
precious) mug is located at a distance H from the concrete floor.

Displaying immense technical skill, your lecturer now subjects the upper end of the
rubber string to periodic vertical displacements so that its position is given by

x̂(t) =

{
L for t < 0
L + A sin(Ωt) for t ≥ 0.

1Any feedback to: M.Heil@maths.man.ac.uk
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(a) Consider the balance of forces acting on the mug to show that for t ≥ 0 its
motion is governed by the ODE

mẍ + cx = cA sin(Ωt),

where x(t) is the vertical displacement of the mug’s handle from its initial
position x = 0. [Hint: Work out the length of the rubber string at an instant
when the handle has moved to x = x(t) while the upper end of the rubber
string has been displaced to x = x̂(t). Recall that the force generated by an
elastic spring is given by the change of its length times its stiffness c.]

(b) State the initial conditions to be applied at t = 0 and solve the initial value
problem for the case when Ω < ω =

√
c/m. Show that Dr Heil’s mug is safe

as long as A < H
(
1 −

(
Ω

ω

))
.

(c) Dr Heil is away at a conference and one of his colleagues gives the MATH10222
lecture for him. The helpful colleague happens to be a pure mathematician
who doesn’t like mechanics and therefore fails to appreciate the practical im-
portance of the resonance phenomenon. He performs the experiment exactly as
instructed (and as described above), but he rather foolishly decides to oscillate
the mug with the frequency Ω = ω =

√
c/m. We wish to determine how long

it takes before Dr. Heil’s precious mug is shattered on the floor.

i. Re-solve the initial value problem for the “resonant” case and state the
equation that determines the time tshatter at which the mug hits the floor.

ii. The condition derived in 1(c)i is a transcendental equation that cannot
be solved in closed form. Use a plot of the height of the mug above the
concrete floor, x(t) + H, to determine an approximate value for tshatter for
the special case Ω = ω = π sec−1, A = 0.01 m and H = 1.5 m.

iii. Exploit the fact that A � H to obtain an approximate value for tshatter.
[Hint: Compare the sizes of the various terms in the “shatter condition”
close to the moment of impact.]

2. Applications of second-order ODEs: The “Dead Cat Bounce”

The “Dead Cat Bounce”is a well-known phenomenon on the stock market and is
often observed when the share price of a badly-performing company tumbles. Just
before the stock price hits zero, the price often shows some temporary recovery and
increases again. The financial analyst (who looks after your investment) now has to
address a crucial question:

• Is this a sign of long-term recovery and should he (or she!) therefore buy lots of
shares, at rock-bottom prices, and thus make an enormous profit as the stock
price continues to rise.

• Is the rise in the share price the infamous “Dead Cat Bounce” and therefore
irrelevant – the fact that a cat bounces when it hits the pavement after being
flung out of a window on the 50th floor of a Canary Wharf tower is not an
indication that it’s going to do well in the future...

To avoid the needless suffering of furry animals, we shall develop a simple math-
ematical model of dead-cat-bouncing to analyse the factors that really affect the
cat’s behaviour following its impact.
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Massless horizontal surface
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Figure 1: Model of a bouncing cat.

Fig. 1 shows the model: The cat (of mass m > 0) is subject to gravity which
exerts a downward force of magnitude mg (g > 0 is the gravitational acceleration,
a known constant). When the cat hits the floor (at time t = 0), its downward
velocity is v0. We model the floor as a massless horizontal surface, mounted on an
elastic support (spring stiffness c > 0) and we assume that there is some damping
(damping constant k > 0). Just before the impact, the floor is located at x = 0, it
is at rest, and the elastic spring is undeformed.

(a) Use Newton’s law (“the sum of all forces acting on the cat is equal to the
product of its mass and acceleration”) to formulate the initial value problem
that describes the cat’s position as a function of time, x(t), for t ≥ 0. Thus
show that (at least the early stages of) the cat’s motion are described by the
ODE

m
d2x

dt2
+ k

dx

dt
+ cx = m g. (1)

(b) State under what conditions the ODE provides a valid description of the cat’s
motion. [Hint: The floor exerts a force

Ffloor = k
dx

dt
+ cx,

onto the cat, where Ffloor > 0 if the force acts upwards. Assuming that the
cat is not glued to the floor (It’s not!), can the floor exert any downward forces
onto the cat?]. Explain how this condition provides a criterion that allows us
to determine if and when the cat “bounces” – a bounce being defined as phase
during which the cat lifts off the floor.

(c) Show that the condition is satisfied in the period immediately after the cat’s
impact. [Hint: Use the initial conditions to establish that Ffloor(t = 0) ≥ 0,
showing that the ODE is valid at the moment of impact. Then use a Taylor
expansion of Ffloor(t) for small positive values of t to show that Ffloor(t) ≥ 0
for at least a short while (0 < t < ∆t, say) after the impact. Note: Having
established that the ODE is valid at t = 0, you can use it to obtain an expression
for d2x/dt2|t=0.]
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(d) Assuming that the ODE (1) is valid, and that c/m = ω2 > [k/(2m)]2 = δ2,
solve the initial value problem and determine the cat’s trajectory. What is the
cat’s ultimate equilibrium position, limt→∞

x(t)?

(e) Use matlab (or your favourite plotting package) to investigate how variations
in the damping constant δ affect the cat’s motion. [Plot the solution x(t)
and the force Ffloor(t) for v0 = 10 m/sec, g = 9.81 m/sec2, ω = π sec−1 and
δ = 0, 1, 2, 3 sec−1, say]. Does an increase in δ encourage or discourage cat-
bouncing?

(f) Show that the cat will bounce if there is no damping (k = δ = 0).

3. Motivating the use of scaling arguments to simplify ODEs

We know that solutions of the ODE

m
d2x

dt2
+ k

dx

dt
+ cx = F cos(Ωt) (2)

have the form
x(t) = xP (t) + xH(t)

where the “transient solution” xH(t) decays very rapidly. Furthermore, a particular
solution xP (t) is known to have the form

xP (t) = A cos(Ωt) + B sin(Ωt).

Guided by this form of the solution, we argued in the lecture that for small values of
Ω it should be possible to obtain a good approximation for xP (t) from the simplified
equation

c x(t) = F cos(Ωt), (3)

the argument being that for sufficiently small Ω, the terms m d2x/dt2 and k dx/dt
in (2) can be neglected against the term c x(t). We checked the “validity” of this
approach by comparing the solution of (3) against the limiting form of the exact
solution for xP , obtained from (2), in the limit Ω → 0.

Repeat this analysis for the case of large Ω. Which term in (2) do you expect to
become dominant as Ω → ∞? State the simplified equation and show that its
solution

xP (t) = −
F

mΩ2
cos(Ωt)

agrees with the limit of the exact solution of (2) as Ω → ∞.


