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MATH10222: EXAMPLE SHEET1 III

Questions for supervision classes

Hand in the solutions to questions 1, 2a,b and 3a-f. [Feel
free to skip the application of the initial conditions in
question 3 once you’re sure you know how it works. By
the end of question 3 you should (i) be pretty bored with
homogeneous constant-coefficient ODEs, and (ii) be able
to do them in your sleep!] Attempt all other questions
too. Questions 2c and 4 should be pretty straightfor-
ward; question 5 provides a more detailed (and interest-
ing!) analysis of the “repeated roots” case.
As always, raise any problems with your supervisor.

1. Existence and uniqueness for linear second-order ODEs

(a) Does the initial value problem

x2 y′′ − 2 x y′ + 2 y = 0,

subject to
y(x = 1) = 1 and y′(x = 1) = 2

have a unique solution? If so, specify the interval in which the solution is
guaranteed to exist.

(b) Does the initial value problem

ẍ − 2
1

t
ẋ + 2

1

t2
x = 0,

subject to
x(t = −1) = 1 and ẋ(t = −1) = 2

have a unique solution? If so, specify the interval in which the solution is
guaranteed to exist.

(c) Does the initial value problem

ÿ + Ω2 y = 0,

subject to
y(t = 0) = 0 and ẏ(t = 0) = 0,

where Ω is a given constant, have a unique solution? If so, specify the interval
in which the solution is guaranteed to exist. Can you spot the solution without
doing any calculations?

1Any feedback to: M.Heil@maths.man.ac.uk
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(d) Now consider the same ODE as in the previous example, but in the context of
the boundary value problem

ÿ + Ω2 y = 0,

subject to
y(t = 0) = 0 and y(t = 1) = 0

where Ω is a given constant. Recall that the existence and uniqueness theorem
does not apply to boundary value problems. Show that the solution of the
initial value problem of question 1c is also a solution of the above boundary
value problem, demonstrating the existence of a solution. Is it possible that
there are other solutions? [Hint: Consider the special cases Ω = π, 2π, ....]

2. Linear and nonlinear second-order ODEs

(a) Verify that y1(t) = t and y2(t) = t2 are linearly independent solutions of the
ODE

t2 ÿ − 2 t ẏ + 2 y = 0,

then write down its general solution.

(b) Verify that y1(t) = et and y2(t) = e2 t are linearly independent solutions of the
ODE

y ÿ − (ẏ)2 = 0,

but that y = A y1(t) + B y2(t), where A and B are arbitrary constants, is not
a solution. Explain why.

(c) Prove the statement that if y1(x) and y2(x) are solutions of the homogeneous
linear ODE

y′′ + p(x) y′ + q(x) y = 0,

then the linear combination A y1(x) + B y2(x) is also a solution, for any values
of the constants A and B.

3. Homogeneous linear ODEs with constant coefficients

Solve the following initial value problems:

(a) ÿ − 5 ẏ + 4 y = 0 subject to y(0) = 0, ẏ(0) = 1.

(b) ÿ + 4 y = 0 subject to y(0) = 1, ẏ(0) = 0.

(c) ÿ − y = 0 subject to y(0) = 1, ẏ(0) = 0.

(d) ÿ + 4 ẏ + 4 y = 0 subject to y(0) = 1, ẏ(0) = −2.

(e) ÿ − 2 ẏ + 3 y = 0 subject to y(0) = 0, ẏ(0) =
√

2.

(f) ÿ = 0 subject to y(0) = 1, ẏ(0) = −2.
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4. The real form of the fundamental solutions in the case of complex con-

jugate roots of the characteristic polynomial

Consider the fundamental solutions of the homogeneous ODE

y′′ + p y′ + q y = 0,

where the constants p and q are such that q > (p/2)2. In the lecture we showed that
the general solution of the ODE was given by

y(x) = eµx
(
Â eiωx + B̂ e−iωx

)
, (1)

where ω =
√

q − (p/2)2 and µ = −p/2. If we are only interested in real solutions,

the constants Â and B̂ obviously have to be complex. In the lecture we had argued
(rather convincingly, but indirectly) that it must possible to re-write the real solution
in the form

y(x) = eµx (A cos(ωx) + B sin(ωx)) .

where A, B ∈ R.

Prove this by “brute force” calculation. [Hint: Write Â and B̂ in terms of their

real and imaginary parts, Â = α + iβ and B̂ = γ + iδ, say, where the constants
α, β, γ, δ ∈ R. Insert into (1) and expand, then set the imaginary part of the
resulting expression to zero.]

5. The form of the solution for repeated roots – “reduction of order”

The characteristic polynomial for the homogeneous linear ODE

ÿ + 2 k ẏ + k2 y = 0, (2)

has a repeated root λ = −k. One of the two fundamental solutions is therefore
given by y1(t) = e−kt. We demonstrated in the lecture (by “brute force” checking)
that y2(t) = t e−kt is a second, linearly independent solution. What motivated your
lecturer to suggest this as a possible solution?2

To solve this mystery, we will now demonstrate a systematic way of constructing a
second solution, y2(t), to a homogeneous, second-order linear ODE if one solution,
y1(t), is already known. The method (known as the “reduction of order”) is to look
for a solution of the form y2(t) = g(t) y1(t), where g(t) is an unknown function.
Inserting this ansatz into the second-order ODE produces a first-order linear ODE
for ġ(t) that can be integrated with standard methods (e.g. using the integrating
factor method). Have a look at Paul Dakwins’ excellent discussion of the method
at

http://tutorial.math.lamar.edu/AllBrowsers/3401/ReductionofOrder.asp

Try this method for the ODE (2) and thus show that its general solution may indeed
be written as y(t) = (C + D t) e−k t, where C and D are constants.

2Well, your lecturer is obviously very very clever, but do you really think he’s clever enough to simply

have spotted this?


