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MATH10222: EXAMPLE SHEET!' III

Questions for supervision classes

Hand in the solutions to questions 1, 2a,b and 3a-f. [Feel
free to skip the application of the initial conditions in
question 3 once you're sure you know how it works. By
the end of question 3 you should (i) be pretty bored with
homogeneous constant-coefficient ODEs, and (ii) be able
to do them in your sleep!] Attempt all other questions
too. Questions 2c¢ and 4 should be pretty straightfor-
ward; question 5 provides a more detailed (and interest-
ing!) analysis of the “repeated roots” case.

As always, raise any problems with your supervisor.

1. Existence and uniqueness for linear second-order ODEs

(a)

Does the initial value problem
22y —2xy +2y =0,
subject to
yz=1)=1 and y(z=1)=2

have a unique solution? If so, specify the interval in which the solution is
guaranteed to exist.

Does the initial value problem

. 1. 1
x—2¥:p+2t—2x20,

subject to
z(t=-1)=1 and Z(t=-1)=2

have a unique solution? If so, specify the interval in which the solution is
guaranteed to exist.

Does the initial value problem
j+ %y =0,
subject to
y(t=0)=0 and g(t=0)=0,

where () is a given constant, have a unique solution? If so, specify the interval
in which the solution is guaranteed to exist. Can you spot the solution without
doing any calculations?

! Any feedback to: M.Heil@maths.man.ac.uk
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(d) Now consider the same ODE as in the previous example, but in the context of
the boundary value problem
i+ Qy =0,
subject to
yt=0)=0 and y(t=1)=0

where € is a given constant. Recall that the existence and uniqueness theorem
does not apply to boundary value problems. Show that the solution of the
initial value problem of question 1c is also a solution of the above boundary
value problem, demonstrating the existence of a solution. Is it possible that
there are other solutions? [Hint: Consider the special cases Q = 7,27, ....]

2. Linear and nonlinear second-order ODEs

(a) Verify that y;(t) = t and y,(t) = t* are linearly independent solutions of the
ODE
24— 2ty +2y =0,
then write down its general solution.

(b) Verify that y,(t) = €' and y»(t) = €*! are linearly independent solutions of the
ODE

yi— ()" =0,
but that y = Ayi(t) + Bya(t), where A and B are arbitrary constants, is not
a solution. Explain why.

(c) Prove the statement that if y;(x) and ys(x) are solutions of the homogeneous
linear ODE

y' +plx)y +q(z)y =0,

then the linear combination Ay;(x)+ B ys(z) is also a solution, for any values
of the constants A and B.

3. Homogeneous linear ODEs with constant coefficients

Solve the following initial value problems:

(a) §—by+4y=0 subject to y(0)=0, ¢(0)=1.
(b) §+4y=0 subject to y(0)=1, ¢(0)=0.

)

)
(¢) y—y=0 subject to y(0)=1, ¢(0)=0.
(d) j+49+4y=0 subject to y(0)=1, g(0)=—-2.
(e) 4 =29 +3y=0 subject to y(0)=0, y(0)=+2.
(f) 4 =0 subject to y(0)=1, ¢(0)=—2.
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4. The real form of the fundamental solutions in the case of complex con-

jugate roots of the characteristic polynomial

Consider the fundamental solutions of the homogeneous ODE

v +py +qy=0,

where the constants p and ¢ are such that ¢ > (p/2)?. In the lecture we showed that
the general solution of the ODE was given by

y(zr) = et (A\eiwx +B e_i“x> : (1)

where w = \/q — (p/2)? and p = —p/2. If we are only interested in real solutions,

-~ ~

the constants A and B obviously have to be complex. In the lecture we had argued
(rather convincingly, but indirectly) that it must possible to re-write the real solution
in the form

y(x) = e (A cos(wz) + B sin(wx)) .

where A, B € R.

Prove this by “brute force” calculation. [Hint: Write A and B in terms of their
real and imaginary parts, A=oa+ 13 and B = v + 19, say, where the constants
a,3,7,0 € R. Insert into (1) and expand, then set the imaginary part of the
resulting expression to zero.]

. The form of the solution for repeated roots — “reduction of order”
The characteristic polynomial for the homogeneous linear ODE

J+2ky+ky=0, (2)

has a repeated root A = —k. One of the two fundamental solutions is therefore
given by 51 (t) = e *. We demonstrated in the lecture (by “brute force” checking)
that y»(t) = te " is a second, linearly independent solution. What motivated your
lecturer to suggest this as a possible solution??

To solve this mystery, we will now demonstrate a systematic way of constructing a
second solution, y5(t), to a homogeneous, second-order linear ODE if one solution,
y1(t), is already known. The method (known as the “reduction of order”) is to look
for a solution of the form ys(t) = g(t) y1(t), where g(¢) is an unknown function.
Inserting this ansatz into the second-order ODE produces a first-order linear ODE
for g(t) that can be integrated with standard methods (e.g. using the integrating
factor method). Have a look at Paul Dakwins’ excellent discussion of the method
at

http://tutorial.math.lamar.edu/Al1Browsers/3401/ReductionofOrder.asp

Try this method for the ODE (2) and thus show that its general solution may indeed
be written as y(t) = (C' + Dt) e *! where C' and D are constants.

2Well, your lecturer is obviously very very clever, but do you really think he’s clever enough to simply
have spotted this?



