MATH10222: EXAMPLE SHEET¹ III

Questions for supervision classes

Hand in the solutions to questions 1, 2a,b and 3a-f. [Feel free to skip the application of the initial conditions in question 3 once you're sure you know how it works. By the end of question 3 you should (i) be pretty bored with homogeneous constant-coefficient ODEs, and (ii) be able to do them in your sleep!] Attempt all other questions too. Questions 2c and 4 should be pretty straightforward; question 5 provides a more detailed (and interesting!) analysis of the "repeated roots" case. As always, raise any problems with your supervisor.

1. Existence and uniqueness for linear second-order ODEs

(a) Does the initial value problem

$$x^2 y'' - 2 x y' + 2 y = 0,$$

subject to

$$y(x = 1) = 1$$
 and $y'(x = 1) = 2$

have a unique solution? If so, specify the interval in which the solution is guaranteed to exist.

(b) Does the initial value problem

$$\ddot{x} - 2\frac{1}{t}\dot{x} + 2\frac{1}{t^2}x = 0,$$

subject to

$$x(t = -1) = 1$$
 and $\dot{x}(t = -1) = 2$

have a unique solution? If so, specify the interval in which the solution is guaranteed to exist.

(c) Does the initial value problem

$$\ddot{y} + \Omega^2 \, y = 0,$$

subject to

$$y(t=0) = 0$$
 and $\dot{y}(t=0) = 0$

where Ω is a given constant, have a unique solution? If so, specify the interval in which the solution is guaranteed to exist. Can you spot the solution without doing any calculations?

¹Any feedback to: *M.Heil@maths.man.ac.uk*

(d) Now consider the same ODE as in the previous example, but in the context of the *boundary* value problem

$$\ddot{y} + \Omega^2 y = 0,$$

subject to

$$y(t=0) = 0$$
 and $y(t=1) = 0$

where Ω is a given constant. Recall that the existence and uniqueness theorem does not apply to boundary value problems. Show that the solution of the initial value problem of question 1c is also a solution of the above boundary value problem, demonstrating the existence of a solution. Is it possible that there are other solutions? [Hint: Consider the special cases $\Omega = \pi, 2\pi,$]

2. Linear and nonlinear second-order ODEs

(a) Verify that $y_1(t) = t$ and $y_2(t) = t^2$ are linearly independent solutions of the ODE

$$t^2 \, \ddot{y} - 2 t \, \dot{y} + 2 \, y = 0,$$

then write down its general solution.

(b) Verify that $y_1(t) = e^t$ and $y_2(t) = e^{2t}$ are linearly independent solutions of the ODE

$$y\ddot{y} - (\dot{y})^2 = 0,$$

but that $y = A y_1(t) + B y_2(t)$, where A and B are arbitrary constants, is not a solution. Explain why.

(c) Prove the statement that if $y_1(x)$ and $y_2(x)$ are solutions of the homogeneous linear ODE

 $\langle \alpha \rangle$

$$y'' + p(x) y' + q(x) y = 0,$$

then the linear combination $A y_1(x) + B y_2(x)$ is also a solution, for any values of the constants A and B.

• (0)

3. Homogeneous linear ODEs with constant coefficients

Solve the following initial value problems:

~

/ `` ··

(a)
$$\ddot{y} - 5\dot{y} + 4y = 0$$
 subject to $y(0) = 0$, $\dot{y}(0) = 1$.
(b) $\ddot{y} + 4y = 0$ subject to $y(0) = 1$, $\dot{y}(0) = 0$.
(c) $\ddot{y} - y = 0$ subject to $y(0) = 1$, $\dot{y}(0) = 0$.
(d) $\ddot{y} + 4\dot{y} + 4y = 0$ subject to $y(0) = 1$, $\dot{y}(0) = -2$.
(e) $\ddot{y} - 2\dot{y} + 3y = 0$ subject to $y(0) = 0$, $\dot{y}(0) = \sqrt{2}$.
(f) $\ddot{y} = 0$ subject to $y(0) = 1$, $\dot{y}(0) = -2$.

4. The real form of the fundamental solutions in the case of complex conjugate roots of the characteristic polynomial

Consider the fundamental solutions of the homogeneous ODE

$$y'' + p \ y' + q \ y = 0,$$

where the constants p and q are such that $q > (p/2)^2$. In the lecture we showed that the general solution of the ODE was given by

$$y(x) = e^{\mu x} \left(\widehat{A} e^{i\omega x} + \widehat{B} e^{-i\omega x} \right), \qquad (1)$$

where $\omega = \sqrt{q - (p/2)^2}$ and $\mu = -p/2$. If we are only interested in real solutions, the constants \widehat{A} and \widehat{B} obviously have to be complex. In the lecture we had argued (rather convincingly, but indirectly) that it must possible to re-write the real solution in the form

$$y(x) = e^{\mu x} \left(A \, \cos(\omega x) + B \, \sin(\omega x) \right).$$

where $A, B \in \mathbb{R}$.

Prove this by "brute force" calculation. [**Hint:** Write \widehat{A} and \widehat{B} in terms of their real and imaginary parts, $\widehat{A} = \alpha + i\beta$ and $\widehat{B} = \gamma + i\delta$, say, where the constants $\alpha, \beta, \gamma, \delta \in \mathbb{R}$. Insert into (1) and expand, then set the imaginary part of the resulting expression to zero.]

5. The form of the solution for repeated roots – "reduction of order" The characteristic polynomial for the homogeneous linear ODE

$$\ddot{y} + 2\,k\,\dot{y} + k^2\,y = 0,\tag{2}$$

has a repeated root $\lambda = -k$. One of the two fundamental solutions is therefore given by $y_1(t) = e^{-kt}$. We demonstrated in the lecture (by "brute force" checking) that $y_2(t) = t e^{-kt}$ is a second, linearly independent solution. What motivated your lecturer to suggest this as a possible solution?²

To solve this mystery, we will now demonstrate a systematic way of constructing a second solution, $y_2(t)$, to a homogeneous, second-order linear ODE if one solution, $y_1(t)$, is already known. The method (known as the "reduction of order") is to look for a solution of the form $y_2(t) = g(t) y_1(t)$, where g(t) is an unknown function. Inserting this ansatz into the second-order ODE produces a first-order linear ODE for $\dot{g}(t)$ that can be integrated with standard methods (e.g. using the integrating factor method). Have a look at Paul Dakwins' excellent discussion of the method at

http://tutorial.math.lamar.edu/AllBrowsers/3401/ReductionofOrder.asp

Try this method for the ODE (2) and thus show that its general solution may indeed be written as $y(t) = (C + Dt) e^{-kt}$, where C and D are constants.

²Well, your lecturer is obviously very very clever, but do you really think he's clever enough to simply have spotted this?