MATH10222: EXAMPLE SHEET ${ }^{1}$ III

Questions for supervision classes
Hand in the solutions to questions 1, 2a,b and 3a-f. [Feel free to skip the application of the initial conditions in question 3 once you're sure you know how it works. By the end of question 3 you should (i) be pretty bored with homogeneous constant-coefficient ODEs, and (ii) be able to do them in your sleep!] Attempt all other questions too. Questions 2c and 4 should be pretty straightforward; question 5 provides a more detailed (and interesting!) analysis of the "repeated roots" case.
As always, raise any problems with your supervisor.

1. Existence and uniqueness for linear second-order ODEs

(a) Does the initial value problem

$$
x^{2} y^{\prime \prime}-2 x y^{\prime}+2 y=0,
$$

subject to

$$
y(x=1)=1 \quad \text { and } \quad y^{\prime}(x=1)=2
$$

have a unique solution? If so, specify the interval in which the solution is guaranteed to exist.
(b) Does the initial value problem

$$
\ddot{x}-2 \frac{1}{t} \dot{x}+2 \frac{1}{t^{2}} x=0,
$$

subject to

$$
x(t=-1)=1 \quad \text { and } \quad \dot{x}(t=-1)=2
$$

have a unique solution? If so, specify the interval in which the solution is guaranteed to exist.
(c) Does the initial value problem

$$
\ddot{y}+\Omega^{2} y=0,
$$

subject to

$$
y(t=0)=0 \quad \text { and } \quad \dot{y}(t=0)=0
$$

where Ω is a given constant, have a unique solution? If so, specify the interval in which the solution is guaranteed to exist. Can you spot the solution without doing any calculations?

[^0](d) Now consider the same ODE as in the previous example, but in the context of the boundary value problem
$$
\ddot{y}+\Omega^{2} y=0,
$$
subject to
$$
y(t=0)=0 \quad \text { and } \quad y(t=1)=0
$$
where Ω is a given constant. Recall that the existence and uniqueness theorem does not apply to boundary value problems. Show that the solution of the initial value problem of question 1c is also a solution of the above boundary value problem, demonstrating the existence of a solution. Is it possible that there are other solutions? [Hint: Consider the special cases $\Omega=\pi, 2 \pi, \ldots$.]

2. Linear and nonlinear second-order ODEs

(a) Verify that $y_{1}(t)=t$ and $y_{2}(t)=t^{2}$ are linearly independent solutions of the ODE

$$
t^{2} \ddot{y}-2 t \dot{y}+2 y=0
$$

then write down its general solution.
(b) Verify that $y_{1}(t)=e^{t}$ and $y_{2}(t)=e^{2 t}$ are linearly independent solutions of the ODE

$$
y \ddot{y}-(\dot{y})^{2}=0,
$$

but that $y=A y_{1}(t)+B y_{2}(t)$, where A and B are arbitrary constants, is not a solution. Explain why.
(c) Prove the statement that if $y_{1}(x)$ and $y_{2}(x)$ are solutions of the homogeneous linear ODE

$$
y^{\prime \prime}+p(x) y^{\prime}+q(x) y=0
$$

then the linear combination $A y_{1}(x)+B y_{2}(x)$ is also a solution, for any values of the constants A and B.

3. Homogeneous linear ODEs with constant coefficients

Solve the following initial value problems:
(a) $\ddot{y}-5 \dot{y}+4 y=0 \quad$ subject to $\quad y(0)=0, \quad \dot{y}(0)=1$.
(b) $\ddot{y}+4 y=0 \quad$ subject to $\quad y(0)=1, \quad \dot{y}(0)=0$.
(c) $\ddot{y}-y=0 \quad$ subject to $\quad y(0)=1, \quad \dot{y}(0)=0$.
(d) $\ddot{y}+4 \dot{y}+4 y=0 \quad$ subject to $\quad y(0)=1, \quad \dot{y}(0)=-2$.
(e) $\ddot{y}-2 \dot{y}+3 y=0 \quad$ subject to $\quad y(0)=0, \quad \dot{y}(0)=\sqrt{2}$.
(f) $\ddot{y}=0 \quad$ subject to $\quad y(0)=1, \quad \dot{y}(0)=-2$.

4. The real form of the fundamental solutions in the case of complex conjugate roots of the characteristic polynomial

Consider the fundamental solutions of the homogeneous ODE

$$
y^{\prime \prime}+p y^{\prime}+q y=0
$$

where the constants p and q are such that $q>(p / 2)^{2}$. In the lecture we showed that the general solution of the ODE was given by

$$
\begin{equation*}
y(x)=e^{\mu x}\left(\widehat{A} e^{i \omega x}+\widehat{B} e^{-i \omega x}\right), \tag{1}
\end{equation*}
$$

where $\omega=\sqrt{q-(p / 2)^{2}}$ and $\mu=-p / 2$. If we are only interested in real solutions, the constants \widehat{A} and \widehat{B} obviously have to be complex. In the lecture we had argued (rather convincingly, but indirectly) that it must possible to re-write the real solution in the form

$$
y(x)=e^{\mu x}(A \cos (\omega x)+B \sin (\omega x)) .
$$

where $A, B \in \mathbb{R}$.
Prove this by "brute force" calculation. [Hint: Write \widehat{A} and \widehat{B} in terms of their real and imaginary parts, $\widehat{A}=\alpha+i \beta$ and $\widehat{B}=\gamma+i \delta$, say, where the constants $\alpha, \beta, \gamma, \delta \in \mathbb{R}$. Insert into (1) and expand, then set the imaginary part of the resulting expression to zero.]
5. The form of the solution for repeated roots - "reduction of order" The characteristic polynomial for the homogeneous linear ODE

$$
\begin{equation*}
\ddot{y}+2 k \dot{y}+k^{2} y=0, \tag{2}
\end{equation*}
$$

has a repeated root $\lambda=-k$. One of the two fundamental solutions is therefore given by $y_{1}(t)=e^{-k t}$. We demonstrated in the lecture (by "brute force" checking) that $y_{2}(t)=t e^{-k t}$ is a second, linearly independent solution. What motivated your lecturer to suggest this as a possible solution? ${ }^{2}$

To solve this mystery, we will now demonstrate a systematic way of constructing a second solution, $y_{2}(t)$, to a homogeneous, second-order linear ODE if one solution, $y_{1}(t)$, is already known. The method (known as the "reduction of order") is to look for a solution of the form $y_{2}(t)=g(t) y_{1}(t)$, where $g(t)$ is an unknown function. Inserting this ansatz into the second-order ODE produces a first-order linear ODE for $\dot{g}(t)$ that can be integrated with standard methods (e.g. using the integrating factor method). Have a look at Paul Dakwins' excellent discussion of the method at

> http://tutorial.math.lamar.edu/AllBrowsers/3401/ReductionofOrder.asp

Try this method for the ODE (2) and thus show that its general solution may indeed be written as $y(t)=(C+D t) e^{-k t}$, where C and D are constants.

[^1]
[^0]: ${ }^{1}$ Any feedback to: M.Heil@maths.man.ac.uk

[^1]: ${ }^{2}$ Well, your lecturer is obviously very very clever, but do you really think he's clever enough to simply have spotted this?

