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3 Second-Order Ordinary Differential Equations

The general form of a second-order ODE is given by

F
(
x, y(x), y′(x), y′′(x)

)
= 0.

It is typically augmented by two boundary or initial conditions, i.e constraints of the form

y(X) = Y, y′(X) = Z,

or
y(X1) = Y1, y(X2) = Y2

where the constants X, Y, Z (or X1, Y1, X2, Y2) are given.
Often the ODE can be written in explicit form as

y′′(x) = f
(
x, y(x), y′(x)

)
.

In this lecture we will mainly concentrate on linear second-order ODEs. (In section 3.3 we will briefly
discuss the solution of two particular types of nonlinear ODEs).

3.1 Some theory for linear second-order ODEs

• In general, we shall write a linear second-order ODE for y(x) in one of two ways, either as

a(x) y′′ + b(x) y′ + c(x) y = d(x)

or as
y′′ + p(x) y′ + q (x)y = r(x).

We will take these ODEs to be defined on an interval

I = (α, β) = {x | α < x < β }

which is chosen such that, at all values of x in I :

– a(x), b(x), c(x) and d(x) are defined and continuous

– and a(x) is never zero

so that the functions p(x), q(x) and r(x), which are defined as

p(x) = b(x)/a(x), q(x) = c(x)/a(x), r(x) = d(x)/a(x),

are also defined and continuous throughout I .

• Theorem (Existence and Uniqueness): If y(x) satisfies the ODE y′′ + p(x) y′ + q(x) y = r(x),
and the functions p(x), q(x) and r(x) are continuous throughout the interval I , then there is only
one solution that satisfies the pair of initial conditions

y(X) = Y and y′(X) = Z

and this solution exists throughout the interval I .

This theorem guarantees that solutions will exist throughout the interval I and that the two initial
conditions, one giving the value of y and the other giving the value of its derivative y ′, both specified
at the same point in I , are enough to select a unique solution.

Note that the existence and uniqueness theorem only applies to initial value problems!

• Superposition: In the special case in which the ODE has r(x) set equal to zero, that is for the
special form of the ODE

y′′ + p(x) y′ + q(x) y = 0

which is known as the ‘homogeneous’ form of the ODE, a linear combination of any solutions is
also a solution. Thus if y1(x) and y2(x) are solutions of y′′ + p(x) y′ + q(x) y = 0 then so is any
function that can be written as A y1(x) + B y2(x) for any constants A and B.
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• Fundamental Solutions: What is more, any solution of the homogeneous second-order linear
ODE y′′ + p(x) y′ + q(x) y = 0 can be written as a linear combination of only two solutions y1(x)
and y2(x), known as ‘fundamental solutions,’ provided y1(x) and y2(x) are nonzero and linearly
independent.

[Reminder: Two functions y1(x) and y2(x), defined on I , are said to be linearly independent on
I if the only linear combination of them that adds up to zero, so that A y1(x) + B y2(x) = 0 for all
x ∈ I , is the one for which A = B = 0.]

The choice of fundamental solutions is not unique. For instance, if {y1(x), y2(x)} is a set of funda-
mental solutions for a given linear homogeneous ODE then

{
y1(x),

(
y1(x) + y2(x)

)}
is another set

of fundamental solutions.

A solution of the homogeneous ODE is sometimes called a complementary function.

• General Solutions: Any solution of the non-homogeneous ODE y′′ + p(x) y′ + q(x) y = r(x) has
the form, known as the ‘general solution’

y = yP (x) + A y1(x) + B y2(x)

where yP (x), known as a ‘particular solution,’ is a solution of the non-homogeneous ODE, and y1(x)
and y2(x) are fundamental solutions of the homogeneous form of the ODE, in which r(x) is set to
zero.

• The solution to a specific boundary or initial value problem can therefore be obtained in four steps:

1. Find the general solutions of the homogeneous ODE:

y′′ + p(x) y′ + q(x) y = 0 =⇒ yH(t) = A y1(t) + B y2(t),

where y1(t) and y2(t) are two nonzero, linearly independent solutions, i.e. they are fundamental
solutions of the homogenous ODE.

2. Find a particular solution of the inhomogeneous ODE

y′′ + p(x) y′ + q(x) y = r(x) =⇒ yP (t).

3. Write down the general solution

y(x) = yP (x) + yH(t) = yP (t) + A y1(x) + B y2(x).

4. Determine the constants A and B from the boundary or initial conditions.

3.2 Linear second-order ODEs with constant coefficients

3.2.1 The general solution of the homogenous ODE

• Second-order ODEs for y(x) of the form

y′′ + py′ + qy = 0 with p and q constant

can always be solved, for all real values of x, using the ansatz

y = eλx.

[Important: The method does not generally work when p and q are not constant.]

• Inserting y = eλx into the ODE and cancelling the common factor eλx yields the so-called charac-

teristic polynomial

λ2 + pλ + q = 0 with roots λ = 1
2

(

−p ±
√

p2 − 4q
)

.

The roots, and hence the nature of the solutions, depends on the sign of the ‘discriminant’ p2 − 4q:
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Case 1: p2
− 4q > 0

If the discriminant is positive (p2 − 4q > 0) then λ has two distinct real roots of the form

λ1 = 1
2

(

−p −
√

p2 − 4q
)

and λ2 = 1
2

(

−p +
√

p2 − 4q
)

.

The general solution of the homogenous ODE can therefore be written as

y = A eλ1x + B eλ2x,

where A and B are arbitrary constants.

Case 2: p2
− 4q < 0

If the discriminant is negative (p2 − 4q < 0) then λ has two complex conjugate roots of the
form

λ = µ ± iω with µ = − 1
2p and ω = 1

2

√

4q − p2.

The general solution of the homogeneous ODE can then be written as

y = A eµx cos(ωx) + B eµx sin(ωx),

where A and B are arbitrary constants.

Case 3: p2
− 4q = 0

If the discriminant is zero (p2−4q = 0) then the characteristic polynomial has one double root

λ1,2 = λ = − 1
2p

giving only one fundamental solution y1 = eλx = e−px/2. However another fundamental
solution is y2 = xeλx = xe−px/2 (Exercise: check this by substitution). The general solution
of the homogeneous ODE can therefore be written as

y = A e−px/2 + B xe−px/2,

where A and B are arbitrary constants.

3.2.2 The particular solution of the inhomogenous ODE: The method of undetermined
coefficients

• The method of undetermined coefficients is, more or less, a process of trial and error, or guesswork,
based on making a suitable initial assumption about the overall form of the solution.

• The method and its pitfalls are best illustrated with an example:

y′′ + py′ + qy = Aeax.

Initial ansatz:
Given that the RHS eax retains its functional form when differentiated, it is tempting to try
a solution in the form y = C e ax, having y′ = Caeax and y′′ = Ca2 eax, so that

Ca2 eax + pCaeax + qC eax = Aeax or (a2 + pa + q)C = A

which requires that C = A
a2+pa+q , leading to the particular solution

y = yp(x) =
A

a2 + pa + q
eax provided a2 + pa + q 6= 0.

Modification if a is a (single) root of the characteristic polynomial
If a2 + pa + q = 0 the initial ansatz, that y = C eax, is obviously inadequate. We note that
this case arises if the a happens to be a root of the characteristic polynomial of the associated
homogeneous ODE. In this case, another ansatz is appropriate. We assume, instead, that

y = Cxeax so that y′ = C(1 + ax)eax, y′′ = C(2a + a2x)eax.
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In this case the ODE gives

C(2a + a2x)eax + pC(1 + ax)eax + qCxeax = Aeax

or (
x (a2 + ap + q)

︸ ︷︷ ︸

=0

+2a + p
)
C = (2a + p)C = A

since a2 + ap + q = 0. Thus we find that C = A
2a+p , leading to the particular solution

y = yp(x) =
A

2a + p
xeax provided a2 + pa + q = 0 and 2a + p 6= 0.

Modification if a is a double root of the characteristic polynomial
If both a2 + pa + q and 2a + p are zero, then both guesses, that y = C e ax or y = Cxeax, are
obviously inadequate. We note that this case arises if a is a double root of the characteristic
polynomial. In this case, yet another ansatz is appropriate. We now assume that

y = Cx2 eax so that y′ = C(2x + ax2)eax, y′′ = C(2 + 4ax + a2x2)eax.

In this case the ODE gives

C(2 + 4ax + a2x2)eax + pC(2x + ax2)eax + qCx2 eax = Aeax

or (
x2 (a2 + ap + q)

︸ ︷︷ ︸

=0

+x (2a + p)
︸ ︷︷ ︸

=0

+2
)
C = 2C = A

since a2 + ap + q = 0 and 2a + p = 0. Thus we find that C = 1
2A, leading to the particular

solution

y = yp(x) = 1
2A x2 eax provided a2 + pa + q = 0 and 2a + p = 0.

• This example shows that a particular solution of the ODE y′′ + py′ + qy = A eax, with constant
coefficients p and q, typically takes the form Cxm eax for an integer power m that depends on
whether or not eax and xeax are solutions of the homogeneous equation.

• Based on this observation we can formulate the “method of undetermined coefficients” for inho-
mogenous, constant-coefficient of the form

y′′ + p y′ + q y = A1 r1(x) + A2 r2(x) + · · · + An rn(x)

where the RHS is a linear combination of n given, linearly-independent functions ri(x) (i = 1, ..., n).

The idea is the following:

1. We initially try to find a particular solution that contains the same (linearly independent)
functions that occur on the RHS:

y
[initial]
P (x) = C1 r1(x) + C2 r2(x) + · · · + Cn rn(x)

with undetermined (constant) coefficients Ci (i = 1, ..., n). The plan is to insert this into the
ODE and to collect the coefficients that multiply the same functions ri(x) (i = 1, ..., n). Since
the ri(x) are linearly independent, their linear combination can only vanish if the coefficients
multiplying them vanish individually. This provides n equations for the n unknown coefficients
Ci (i = 1, ..., n). Bingo!

2. This doesn’t work, however, if the derivative of any of the ri(x) cannot be expressed as a linear

combination of the terms in y
[initial]
P . [In the above example, the derivatives of r1(x) = eax

were simply multiples of eax, so no additional functions arose. However, if r1(x) = x2, say, the

differentiation of y
[initial]
P would also produce r′1(x) = 2x and r′′1 (x) = 2.]

To deal with such cases, we generalise our ansatz to the form

y
[better]
P (x) = C1 r1(x) + C2 r2(x) + · · · + Cn rn(x)

+ D1 r′1(x) + D2 r′2(x) + · · · + Dn r′n(x)

+ E1 r′′1 (x) + E2 r′′2 (x) + · · · + En r′′n(x),

where we set the coefficients Ei and Di (i = 1, ..., n) that multiply terms that are already

contained in y
[initial]
P (x) to zero.
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3. Finally, we have to deal with the case where some of the terms in y
[better]
P are solutions of the

homogenous ODE y′′ +p y′+ q y = 0. Let r̃(x) be a term in y
[better]
P (x) that is a solution of the

homogeneous ODE. For each such term, we replace r̃(x) by xm r̃(x), where m is the smallest
positive integer for which xm r̃(x) does not solve the homogeneous ODE. If the derivatives of

xm r̃(x) create new linearly independent functions, not yet contained in y
[better]
P , add these too.

3.3 Some nonlinear second-order ODEs

In a few cases, second-order ODEs can be solved as first-order ODEs. Two important cases are those
that take the form

d2y
dt2 = f

(
y, dy

dt

)
or d2y

dt2 = f
(
t, dy

dt

)

when describing y(t). The first of these represents second-order ODEs that are autonomous, which is to
say that they do not depend on t (apart from differentiating with respect to t). The second represents
second-order ODEs that do not depend on y (except as derivatives of y).

3.3.1 Second-order ODEs for y(t) that do not depend on y

Such ODEs take the form
y′′ = f(t, y′).

All we need to do is note that this is actually a first-order ODE for y′(t). If we write, v(t) = y′(t) then
the ODE is clearly a first-order ODE for v, namely

v′ = f
(
t, v

)
.

If this is solved to find a solution v(t), then y(t) is a solution of the first-order ODE y′ = v(t).

3.3.2 Autonomous second-order ODEs

Autonomous second-order ODEs which, when describing y(t) have the form

y′′ = f(y, y′)

can also be solved by writing v = y′(t), but in a different way. Differentiating y′(t) = v gives

y′′ =
dv

dt
=

dv

dy

dy

dt
= v

dv

dy
.

The ODE can therefore be rewritten in the form

v dv
dy = f(y, v)

which, if we think of v as being a function of y, is a first-order ODE for v. If we can solve for v = v(y)
then y(t) is a solution of the first-order ODE y′ = v(y).


