Chapter 2

Analysis of strain

2.1 The infinitesimal strain tensor
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Figure 2.1: Sketch illustrating the deformation of an elastic body: The body is displaced, rotated and
deformed.

Lagrangian description: Label material points by their coordinates before the deformation (i.e. in
the reference configuration).

Displacement field: The material particle at position r; = x; before the deformation is displaced to
R; after the deformation:

Ri = i + ui(wj). (2.1)
e The deformation changes material line elements from dr; (= dx;) to dR;:
u;
dR; = dr; - dz;. 2.2
ri + 81‘7 N €z < )
o We will restrict ourselves to a linearised anlysis in which the displacement derivatives are small, i.e.
E)ui
< 1. 2.3
o (2.3)
. g_:f is the displacement gradient tensor:
Ou;
67‘; = €5 + wij, (2.4)
where
1/ 0u;  Ouy . .
G = 5 <8Z]’ 6:) =ej; s the strain tensor and (2.5)
1 /0u; O . .
wij = 3 <8Zj — 6:) = —wj; is the rotation tensor. (2.6)
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e Displacements in the vicinity of r:

u;(r + dr) = u; (r) +  wjdz;  + eijde; (2.7)
Rigid Body Rigid Body Pure
Translation Rotation Deformation

2.2 Rigid body rotation

e For e;; =0 (2.2) and (2.7):
dR =dr +w x dr (2.8)

where w = (w32, w13, wo1)T. Represents rigid body rotation for |w;;| < 1.

2.3 Pure deformation

2.3.1 Extensional deformation

e During the deformation the line element dr; = ds n; is stretched to dR; = dS N; (n and N are unit
vectors).
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Figure 2.2: Sketch illustrating the extension (and rotation) of material line elements during the deforma-
tion of an elastic body.

e The normal strain e, is the relative extension of the line element ds n:

_dS—ds
T ds

en = €;jnin; (2.9)

o The e(;)(;) are the normal strains along the coordinate axes.

2.3.2 Shear deformation

e Consider the change of the angle between two material line elements dr() = dsMn® dr? =
dsn® which are orthogonal to each other in the undeformed state, (drgl)drl@ = 0). Before the
deformation: ¢ = 7/2. After the deformation (see Fig. 2.3):

cos ¢ = 2e;nin?). (2.10)

o The e;; for i # j are the shear strains w.r.t. the coordinate axes.

2.4 Principal axes/strain invariants

e The strain tensor gives the strains relative to the chosen coordinate system. Rotation of the
coordinate system to a new one, such that

Z; = a;jx; where a;jap; = d;, (orthogonal matrix, AT =AY (2.11)
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Figure 2.3: Sketch illustrating the shear deformation, i.e. the change in the angle between two material a
line elements during the deformation of an elastic body.
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transforms the components of the strain tensor to:
¢, = amemay (symbolically o AEAT). (2.12) Figure 2.4: Sketch illustrating the strain compatibility condition.
o There exists a special coordinate system (principal azes) in which ej; = 0 for i # j. 2.6 Homogeneous deformation
e The principal axes are the normalised eigenvectors of e;;. e A deformation for which
s
e The normalised eigenvectors form the rows of the transformation matrix a;; to the coordinate 8::1 = const. (2.15)
i

system formed by the principal axes.
throughout the body is called a homogeneous deformation.

The eigenvalues of e;; are the principal strains, i.e. the strains in the directions of the normal axes. E )
xamples:

The maximum normal strain, maxey, (max. over all directions n) is given by the maximum
principal strain. Simple extension E.g. e1; = e, e;; = 0 otherwise.

Uniform dilation e;; = egd;; (spherically symmetric).

The strain tensor has three invariants (i.e. quantities that are independent of the choice of the . . ]
coordinate system): Simple shearing E.g. €12 = €21 = g, ¢;; = 0 otherwise.

— the dilation: d = e;; which represents the relative change in volume
d=e; = (dV —dv)/dv (2.13)

— the determinant: dete;;.

— and a third quantity: 1/2(e;je;; — eiiej;)

2.5 Strain compatibility

o Equation (2.5) expresses e;; in terms of a given displacement field ;.

o The inverse problem: e;; only describes a continuous deformation of a body (i.e. no gaps or overlaps
of material develop during the deformation) iff:

€ij,kl + €klij — €kjil — €ilkj = 0 (2.14)

This represents 3* = 81 equations but only the ones corresponding to the following six parameter
combinations are non-trivial and distinct:

—| || =
| 10| | =
ol pof =] =
| | po| =
wolwof =] =
wl wo| po| =
wl oo po|

Geometrical interpretation which motivates the derivation of eqns. (2.14): e;; determines the
deformation of infinitesimal rectangular (cubic in 3D) blocks of material. After the deformation,
the individually deformed blocks of material (deformed according to their local value of ¢;;) must
still fit together to form a continuous body.



