MT3271: EXAMPLE SHEET ${ }^{1}$ II

1.) A 2 D body occupying the region $\left\{d: 0 \leq x_{1} \leq 1,0 \leq x_{2} \leq 1\right\}$ is displaced by the following displacement field (see problem 3 on the last sheet) $u_{1}=\epsilon\left(x_{1}+2 x_{2}\right) ; u_{2}=$ $\epsilon\left(3+x_{2}\right)$ where $\epsilon \ll 1$.
a) Compute the extension $e_{\mathbf{n}_{1}}$ of a line element in the direction of the unit vector $\mathbf{n}_{1}=(3 / 5,4 / 5)^{T}$ and the change in the angle between \mathbf{n}_{1} and $\mathbf{n}_{2}=$ $(-4 / 5,3 / 5)^{T}$.
b) Find the principal axes and principal strains - i.e. the directions in which the deformation is purely extensional. Check the calculated principal strains by directly computing the extensions of line elements in these directions [since the strain is spatially constant, you can simply determine the lengths of finite line elements before and after the deformation]. Relate the principal axes to the sketched deformation of the body (from the last example sheet).
2.) .
a) Show that $d=\operatorname{div} \mathbf{u}$ and $\boldsymbol{\omega}=1 / 2$ curl \mathbf{u}.
b) Consider the rectangular parallelepiped, formed by the three infinitesimal vectors $\left(d x_{1}, 0,0\right)^{T},\left(0, d x_{2}, 0\right)^{T},\left(0,0, d x_{3}\right)^{T}$. Show that the fractional volume change of this infinitesimal volume element is given by d (as claimed in the lecture).
3.) Show that

$$
\frac{\partial \omega_{i k}}{\partial x_{j}}=\frac{\partial e_{i j}}{\partial x_{k}}-\frac{\partial e_{k j}}{\partial x_{i}} .
$$

Coursework

Please hand in the solution to question 1 by Friday. Please place them into the file in Dr. Heil's pigeonhole in the general office on the 4th floor.

[^0]
[^0]: ${ }^{1}$ Any feedback to: M.Heil@maths.man.ac.uk

