
Chapter 6

Plane strain problems

6.1 Basic equations

Definition: A deformation is said to be one of plane strain (parallel to the plane x3 = 0) if:

u3 = 0 and uα = uα(xβ). (6.1)

• There are only two independent variables, (x1, x2) = (x, y).

• Plane strain is only possible if F3 = 0.

• Only the in-plane strains are non-zero, ei3 = 0.

• Stress-strain relationship:
ταβ = λδαβeγγ + 2µeαβ. (6.2)

2µeαβ = ταβ − νδαβ τγγ
︸︷︷︸

θ̃

(6.3)

τ33 = ντγγ = νθ̃ (6.4)

• Static equilibrium equations:
ταβ,β + Fα = 0 (6.5)

• Compatibility equation: Only one non-trivial equation

0 = e11,22 + e22,11 − 2e12,12 (6.6)

Formulated in terms of stresses:
(1 − ν)θ̃,αα + Fα,α = 0, (6.7)

or symbolically
(1 − ν)∇̃2θ̃ + div F = 0, (6.8)

where ∇̃2 = ∂2/∂x2 + ∂2/∂y2.

6.2 The Airy stress function

• For F = 0 the in-plane stresses can be expressed in terms of the Airy stress function φ:

τ11 =
∂2φ

∂y2
, τ22 =

∂2φ

∂x2
, τ12 = −

∂2φ

∂x∂y
. (6.9)

• The Airy stress function is biharmonic:

∇̃4φ =
∂4φ

∂x4
+ 2

∂4φ

∂x2∂y2
+

∂4φ

∂y4
= 0. (6.10)
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6.3 The stress boundary conditions in terms of the Airy stress

function

• The applied tractions along the boundary ∂D (parametrised by the arclength s) are given in terms
of the Airy stress function φ by

t1(s) = tx(s) =
d

ds

(
∂φ

∂y

)

(6.11)

and

t2(s) = ty(s) = −
d

ds

(
∂φ

∂x

)

. (6.12)

• Hence, if tα(s) is given, the boundary conditions for φ can be derived by the following procedure:

1. Integrate (6.11) and (6.12) along the boundary (w.r.t. s). This provides (∂φ/∂x, ∂φ/∂y)T =
∇̃φ on the boundary.

2. Rewrite ∇̃φ = ∂φ/∂s et + ∂φ/∂n en where et and en are the unit tangent and (outer) normal
vectors on the boundary. This provides ∂φ/∂s and ∂φ/∂n along the boundary.

3. Integrate ∂φ/∂s along the boundary (w.r.t. s). This provides φ along the boundary.

• After this procedure φ and ∂φ/∂n are known along the entire boundary and can be used as the
boundary condition for the fourth order biharmonic equation (6.10).

• Note: any constants of integration arising during the procedure can be set to zero.

• For a traction free boundary, tα(s) = 0, we can use the boundary conditions:

φ = 0 and ∂φ/∂n = 0 on ∂D (6.13)

6.4 The displacements in terms of the Airy stress function

• For a given Airy stress function φ(x, y), the displacements u(x, y), v(x, y), are determined by

2µ
∂u

∂x
= (1 − ν)∇̃2φ −

∂2φ

∂x2
, (6.14)

2µ
∂v

∂y
= (1 − ν)∇̃2φ −

∂2φ

∂y2
(6.15)

and

µ

(
∂u

∂y
+

∂v

∂x

)

= −
∂2φ

∂x∂y
. (6.16)

• One way to determine the displacement fields from these equations is given by the following proce-
dure:

1. Get p(x, y) = ∇̃2φ(x, y) from the known φ(x, y).

2. p(x, y) is a harmonic function; determine its complex conjugate q(x, y) from the Cauchy-
Riemann equations:

∂p

∂x
=

∂q

∂y
and

∂p

∂y
= −

∂q

∂x
. (6.17)

3. Integrate f(z) = f(x + iy) = p(x, y) + i p(x, y) and thus determine P (x, y) and Q(x, y) from

F (z) =

∫

f(z)dz =: P (x, y) + i Q(x, y). (6.18)
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4. Then the displacements are given by:

u(x, y) =
1

2µ

[

(1 − ν) P (x, y) −
∂φ

∂x
+ a + cy

︸ ︷︷ ︸

rigid body
motion

]

(6.19)

and

v(x, y) =
1

2µ

[

(1 − ν) Q(x, y) −
∂φ

∂y
+ b − cx

︸ ︷︷ ︸

rigid body
motion

]

. (6.20)

6.5 Equations in polar coordinates

• The biharmonic equation in polar coordinates:

∇̃
4φ(r, ϕ) =

[
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2

] [
∂2φ

∂r2
+

1

r

∂φ

∂r
+

1

r2

∂2φ

∂ϕ2

]

(6.21)

∇̃
4φ(r, ϕ) = φ,rrrr +

2

r
φ,rrr −

1

r2
(φ,rr − 2φ,rrϕϕ) +

1

r3
(φ,r − 2φ,rϕϕ) +

1

r4
(4φ,ϕϕ + 2φ,ϕϕϕϕ) (6.22)

• For axisymmetric solutions:

∇̃
4φ(r) =

1

r

[

r

(
1

r
[rφ,r],r

)

,r

]

,r

(6.23)

∇̃4φ(r) = φ,rrrr +
2

r
φ,rrr −

1

r2
φ,rr +

1

r3
φ,r (6.24)

• Stresses:

τrr =
1

r2

∂2φ

∂ϕ2
+

1

r

∂φ

∂r
, (6.25)

τϕϕ =
∂2φ

∂r2
(6.26)

τrϕ =
1

r2

∂φ

∂ϕ
−

1

r

∂2φ

∂r∂ϕ
= −

∂

∂r

(
1

r

∂φ

∂ϕ

)

. (6.27)

6.6 Particular solutions of the biharmonic equation

6.6.1 Harmonic functions

• Obviously, all harmonic functions also fulfil the biharmonic equation.

6.6.2 Power series expansions

φ(x, y) =
∑

i,k

aikxiyk (6.28)

• Any terms with i + k < 2 do not give a contribution.

• Any terms with i + k < 4 fulfil ∇̃4φ = 0 for arbitrary constants aik. Special cases are:

φ(x, y) τxx τyy τxy Interpretation:

a02 y2 2 a02 0 0 constant tension in x-direction
a11 xy 0 0 −a11 pure shear
a20 x2 0 2 a20 0 constant tension in y-direction
a03 y3 6 a03y 0 0 pure x-bending
a30 x3 0 6 a30x 0 pure y-bending

• Linear combinations provide stress fields for combined load cases.
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6.6.3 Solutions in polar coordinates

• The general axisymmetric solution:

φ(r) = A0 + B0r
2 + C0 ln r + D0r

2 ln r (6.29)

• The general separated non-axisymmetric solution:

For n = 1:

φ(r, ϕ) =

(

Ar +
B

r
+ Cr3 + Dr log r

)

cos(ϕ)

+

(

ar +
b

r
+ cr3 + dr log r

)

sin(ϕ) (6.30)

For n ≥ 2:

φ(r, ϕ) =

∞∑

n=2

(
Anrn + Bnr−n + Cnrn+2 + Dnr−n+2

)
cos(nϕ)

+
(
anrn + bnr−n + cnrn+2 + dnr−n+2

)
sin(nϕ) (6.31)

6.7 St. Venant’s principle

Section 6.6 provides many solutions of the biharmonic equation. The free constants in these solutions
have to be determined from the boundary conditions. This is the hardest part of the solution! ‘Good’
approximate solutions can often be obtained by using:

St. Venant’s principle

In elastostatics, if the boundary tractions t on a part ∂D1 of
the boundary ∂D are replaced by a statically equivalent traction
distribution t̂, the effects on the stress distribution in the body are
negligible at points whose distance from ∂D1 is large compared to
the maximum distance between the points of ∂D1.

‘Statically equivalent’ means that the resultant forces and moments due to the two tractions t and t̂

are identical. Hence, the traction boundary conditions are not fulfilled pointwise but in an average sense.


