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5.4 Simplifications for F = const.:
e For constant (or vanishing!) body force, the stress, strain and displacement components are bihar-

monic functions,
Ui jjkk =0 Tijren =0 eijren =0 (5.9)

or symbolically:
Chapter 5 Viu=0 Vir;=0 Vie;=o0. (5.10)

The dilation and the trace of the stress tensor are harmonic functions:

The equations of linear elasticity wighk = =0 700 = 010 =0 (10

or symbolically:

Vid=0 V20=0 (5.12)

Note that in (5.4) — (5.8) F acts as an inhomogeneity in a system of linear equations. The system
can be transformed into a homogeneous system for u, = u—u, (with different boundary conditions)
if a particular solution u, (which does not have to fulfil the boundary conditions) can be found.

5.1 Summary of equations

e Strain-displacement relations:

1
eij = =(uij + ;) (5.1) g
A 5.5 Boundary conditions:

e Equilibrium equations/equations of motion:

r 0%u; (5.2) e Displacement (Dirichlet) boundary conditions: Prescribed displacement field u£0>.
Tijg T Fi =P 5.
ot?
(0)
wilan = u' 5.13
e Constitutive equations: ilop ! ( )
Tij = Aijerr + 2pueq; (5.3) . ) . . (0)
o Stress (Neumann) boundary conditions: Prescribed (applied) traction ¢; ’ on boundary. Note that

. . . R . n; is the outer unit normal vector on the elastic body.
5.2 Displacement formulation: The Navier-Lamé equations
A tilop = ijnjlop =t (5.14)
e Solve for the displacements:

0%,

O\ 1) + it + Fy = (5.4) e Mixed (Robin) boundary conditions — ‘elastic foundation’ represented by the stiffness tensor k;j;.
Uk ki T Hli ek i=r o2 ' Physically, this implies that the traction which the elastic foundation exerts on the body is propor-
or symbolically: tional to the boundary displacement. This can be combined with an applied traction tEO) as in the
8%u Neumann case.
P 2 — -

(A4 ) grad divu+ uVu+F=p 2 (5.5) (t + kigwy) lop = (rign; + kiju) lop = tgn) (5.15)

which is equivalent to:

02
(A +2p) grad divu — g curl curl u+ F = pa—tl;. (5.6)

e This is a system of three coupled linear elliptic PDEs for the three displacements u;(x;).

5.3 Stress formulation: The static Beltrami-Mitchell equations

e For static deformations, we have

_ 1
H—Z Tiijj +Fii =0 or symbolically H—::VZO +div F =0. (5.7)

0,53

and the stresses fulfil the Beltrami-Mitchell equations:

1 v
Tij,kk +1+]/Tlck,l] +1_’/ ij Pk +F5:+ Fij < )
V2715 0,i; div F

o (5.8) represents a system of six coupled linear elliptic PDEs for the six stress components 7;;(;).
When these have been determined, the strains can be recovered from (4.6) or (4.16). Then the
displacements follow from (5.1). They are only determined up to arbitrary rigid body motions.
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Governing Equations in Cylindrical Polar Coordinates
e vy =x=rcosb, xo =y=rsinf, x3 =2z =z
u = (up,ug,uz), e=(ey), 7=(r;), wherei, j=r0,z

e Vector calculus:

100G B, g, 100 10 o
T 890+0 dlvuir or r 00 0z’

= 1071,27% o au,70uz o+ 10(7“11,9)71% N
N =A o T os 9z or v or  ron)”

e Stress-strain relations have the same form as in Cartesian coordinates:

grad f =

Tij = A0yj div u + 2pe;, i,j=r0,z

e Stress-displacement relations:

Ou.
= Adivu+2u 6“,
z

. Ou,. duyg
TTT,—/\dlvu+2uE, 7'99—)\dlvu+2u< 00+ ),

T Tor _ Oug ug | 10u, Trz  Ter  Ouy  Oup  Tpo T 10w, | Oug

i u or rooradl’  u w o or 9z p u r oo 9z

e Strain-displacement relations:

o ou,. ey — 10ug u, o — Ju,
o= = o0 r’ =70z
dug  up 10u, ou,  Ou. 10u, aug
2erg = 2€0r = —— — — + = , o 2ep; =26 = , 2e.9 = 2€p, = =
o =20 = T e TR T gy g P TR i Y

e Equilibrium equations (statics): for the displacement formulation, use Navier’s equation,
(A + 2p) graddivu — peurlcurlu + F = 0,
whereas for the stress formulation, use

Oter 10T | OTrz | Tor — Too

ar r 00 dz r +h 0
Otrg | 10199 | 079z | 2

o Trop " or Tpe e =00
Orr. 1079, 3 v L

ALESN AL AL S Ay R

ar r 00 dz T

e Stress boundary conditions: these are when t is prescribed. We have, from t; = 7,7,

tr = NpTpr + RTrg + NaTrz
to = NyTro+ NgToo +N2Tox
t. = NpTr. +N9To. + Moz

14

MT3271 ELASTICITY: THE EQUATIONS OF LINEAR ELASTICITY 15

Governing Equations in Spherical Polar Coordinates

e r1 =x=rsinf cosp, o =y =rsinf singp, xs = z = rcosé.

u = (ur, g, ug),

e Vector calculus:

of . lﬁfe 1 of 4
ar r 90 rsm@f)qb

curlu =

1
72 sin 0

e=(ey), 7= (mi;), wherei,j=r0,¢.

&,

1 9, 5, . 0
=g {E(r sin 0 u,) + 80(r§1110u9) + —(r1L¢)},

¢
r@  rsinf ¢
i)
or 00 k)
Ur  TUg TSINPUG

e Stress-strain relations have the same form as in Cartesian coordinates:

Tij = A0y divu + 2pe;5, i,j=mr,0,0¢.

e Stress-displacement relations:

du,
Trp = Adivu + 2”61
-

T

sinf d¢p
Trg _ Tgr _ 1 Oup  Oug

2 1 0 . O 10
Ta¢:)\divu+i< ﬁJrueruecotf)), Tro _Ter _OUs U, _OUr

I I rsinf d¢ or

e Strain-displacement relations:

dug
ng—)\dlvuﬁ-T(Wﬁ‘ )

1 I or r +7‘ a0’

Ugp Tog Teo 1 Ouep 1 aqu Ug COL 0

r’op m rsin08_¢ r 00 T

ou,. 1 Oug 1 8u¢ Ur 4 ug cot 6

Crp = —, egg = —— + — Chp = —— 5
T or %= 00 r’ %7 Tsinf 9¢ r ro
u U, 10u 1 Ou du, u,
2(’7972(’97—79—i+ “ 267(3:2(3@,: - J—i

or r o ran’

2€¢9 = 2694, =

rsin@ O¢ r’
1 Oug 10uy ugcoth

rsin@%Jrr 174 r

e Equilibrium equations (statics): for the displacement formulation, use Navier’s equation,

(A +2p) graddivu — peurlcurlu + F = 0,

whereas for the stress formulation, use

ITr 10709 1 07y | 2Tpr — Too — Top +COt O Trg
. - : +F =0
or r 00 rsinf 0¢ r
OTr 1 90790 1 6T0¢ 3700 + (T(}(} — T¢¢) cot 6
Fp = 0
or +r 00 +rsint9 0 r + oo
01y 10794 1 014y | 3T + 279¢ coOt O
2209 F, = 0.
ar r 06 + rsinf ¢ r tEs

e Stress boundary conditions: these are when t is prescribed. We have, from t; = 7,7,

t, =
tg =
td) =

Ny Trr + NoTro + N Trg
My Tro + NoToo + Ny Toe
‘flr‘rms + npTos + ﬁ®T¢¢



