MT3271: EXAMPLE SHEET ${ }^{1}$ IX

1.) For a body in plane strain (parallel to $z=0$) let $C_{A B}$ be a part of its boundary curve in the $x y$-plane, as shown in Fig. 1. Show that the resultant force $\left(F_{x}, F_{y}\right)$ and the moment about the origin \mathbf{M}_{0}

Figure 1: A rigid body in plane strain.
(all per unit length in the z-direction) of the tractions acting upon $C_{A B}$ are given by

$$
F_{x}=\left[\frac{\partial \phi}{\partial y}\right]_{A}^{B}, \quad F_{y}=\left[-\frac{\partial \phi}{\partial x}\right]_{A}^{B}
$$

and

$$
\mathbf{M}_{0}=\left[\phi-x \frac{\partial \phi}{\partial x}-y \frac{\partial \phi}{\partial y}\right]_{A}^{B} \mathbf{e}_{z}
$$

[Hint: Use integration by parts when determining \mathbf{M}_{0}].
2.) a) Show that

$$
\nabla^{2}(\phi \psi)=\phi \nabla^{2} \psi+\psi \nabla^{2} \phi+2 \nabla \psi \cdot \nabla \phi
$$

b) Using the result from (a), show that the functions

$$
\begin{gathered}
F_{1}(x, y)=x H(x, y) \\
F_{2}(x, y)=y H(x, y) \\
F_{3}(x, y)=\left(x^{2}+y^{2}\right) H(x, y)
\end{gathered}
$$

are biharmonic if $H(x, y)$ is a harmonic function, i.e. $\nabla^{2} H(x, y)=0$.
3.) Show that the general solution to the axisymmetric biharmonic equation

$$
\begin{equation*}
\tilde{\nabla}^{4} \phi(r)=\phi_{, r r r r}+\frac{2}{r} \phi_{, r r r}-\frac{1}{r^{2}} \phi_{, r r}+\frac{1}{r^{3}} \phi_{, r} \tag{1}
\end{equation*}
$$

is given by

$$
\phi(r)=A_{0}+B_{0} r^{2}+C_{0} \ln r+D_{0} r^{2} \ln r
$$

[Hint: (1) is a linear Euler equation].

Coursework

Please hand in the solution to question 1 by Wednesday (in 1 $1 / 2$ week's time). Please place them into the file in Dr. Heil's pigeonhole in the general office on the 4th floor.

[^0]
[^0]: ${ }^{1}$ Any feedback to: M.Heil@maths.man.ac.uk

