## MT3271: EXAMPLE SHEET $^1$ X

1.) a) A hollow cylinder (internal diameter a, outer diameter b, Lamé coefficients  $\lambda, \mu$ ) is subject to a pressure  $p_a$  on the inside and a pressure  $p_b$  on the outside. There are no body forces. You can assume that the displacement field has the form  $\mathbf{u} = u(r)\hat{\mathbf{r}}$ , where  $\hat{\mathbf{r}}$  is the unit vector in the radial direction.

Use the Navier-Lamé equations to determine the displacement field of the hollow cylinder. Thus show that the displacement field can be written in compact form as

$$u(r) = (Ap_a + Bp_b)r + \frac{Cp_a + Dp_b}{r}$$

and determine the coefficients A, B, C and D in terms of  $a, b, \lambda$  and  $\mu$ .

**b)** Apply the result obtained in part (a) to the problem sketched in Fig. 1: A hollow cylinder (inner diameter  $a_1$ , outer diameter  $b_1$  and coefficients  $A_1, B_1, C_1$  and  $D_1$ ) is surrounded by a second hollow cylinder (inner diameter  $a_2 = b_1$ , outer diameter  $b_2$  and coefficients  $A_2, B_2, C_2$  and  $D_2$ ). In the unstressed state the interface pressure between the two cylinders is zero.

Show that the interface pressure  $p_I$  between the two cylinders is given by

$$p_I = p_0 \frac{A_1 a_2^2 + C_1}{(A_2 - B_1)a_2^2 + (C_2 - D_1)}$$

when the inside of the inner cylinder is subjected to a positive pressure  $p_0$  and the outside of the outer cylinder is stress free. [Hint: the inner and outer cylinder stay in contact during the deformation].



Figure 1: Sketch of two hollow cylinders.

<sup>&</sup>lt;sup>1</sup>Any feedback to: M.Heil@maths.man.ac.uk