MT3271: EXAMPLE SHEET ${ }^{1}$ X

1.) a) A hollow cylinder (internal diameter a, outer diameter b, Lamé coefficients λ, μ) is subject to a pressure p_{a} on the inside and a pressure p_{b} on the outside. There are no body forces. You can assume that the displacement field has the form $\mathbf{u}=u(r) \hat{\boldsymbol{r}}$, where $\hat{\boldsymbol{r}}$ is the unit vector in the radial direction.
Use the Navier-Lamé equations to determine the displacement field of the hollow cylinder. Thus show that the displacement field can be written in compact form as

$$
u(r)=\left(A p_{a}+B p_{b}\right) r+\frac{C p_{a}+D p_{b}}{r}
$$

and determine the coefficients A, B, C and D in terms of a, b, λ and μ.
b) Apply the result obtained in part (a) to the problem sketched in Fig. 1: A hollow cylinder (inner diameter a_{1}, outer diameter b_{1} and coefficients A_{1}, B_{1}, C_{1} and D_{1}) is surrounded by a second hollow cylinder (inner diameter $a_{2}=b_{1}$, outer diameter b_{2} and coefficients A_{2}, B_{2}, C_{2} and D_{2}). In the unstressed state the interface pressure between the two cylinders is zero.
Show that the interface pressure p_{I} between the two cylinders is given by

$$
p_{I}=p_{0} \frac{A_{1} a_{2}^{2}+C_{1}}{\left(A_{2}-B_{1}\right) a_{2}^{2}+\left(C_{2}-D_{1}\right)}
$$

when the inside of the inner cylinder is subjected to a positive pressure p_{0} and the outside of the outer cylinder is stress free. [Hint: the inner and outer cylinder stay in contact during the deformation].

Figure 1: Sketch of two hollow cylinders.

[^0]
[^0]: ${ }^{1}$ Any feedback to: M.Heil@maths.man.ac.uk

