Chapter 1

Introduction

This set of notes summarises the main results of the lecture ‘Elasticity’ (MT30271). Please email any cor-
rections (yes, there might be the odd typo...) or suggestions for improvement to M. Heil@maths.man.ac.uk
or see me after the lecture or in my office (Lamb building, office 1.05).

Generally, the notes will be handed out after the material has been covered in the lecture. You can
also download them from the WWW:

hitp://www.maths.man.ac.uk/ “mheil/Lectures/Elasticity/MT30271-Elasticity. html.

This WWW page will also contain announcements, example sheets, solutions, etc.

1.1 Literature

The following is a list of books that I found useful in preparing this lecture. I've quoted the prices where
I knew what they were. It is not necessary to purchase any of these books! Your lecture notes
and these handouts will be completely sufficient.

Textbook which covers most of the material in this lecture: Gould, P.L. Introduction to Linear
FElasticity, 2nd ed. Springer (1994) — £51

Nice (useful) review of Linear Algebra: Banchoff, T. & Wermer, J. Linear Algebra Through Geom-
etry, 2nd ed. Springer (1991).

One of the classic elasticity texts: Green, A.E. & Zerna, W. Theoretical Elasticity. Dover (1992) —
paperback reprint of the original version from Oxford University press £11.95

And another classic: Love, A.E.H. Treatise on the Mathematical Theory of Elasticity. Dover (1944) —
paperback reprint of the original version from Cambridge University press £15.95

A beautiful little book (but out of print!): Long, R.R. Mechanics of Solids and Fluids. Prentice-
Hall, (1961) — £11.00 (back then, presumably...). Try the library.

My own favourite elasticity book (this book saved my PhD!): Wempner, G. Mechanics of Solids
with Applications to Thin Bodies. Kluwer Academic Publishers Group (1982) — unfortunately only
available as hardback for £126!!

1.2 Preliminaries: Index notation & summation convention

Denote vectors/matrices/tensors by their components, i.e. r =7;; A = A;;

Greek indices range from 1 to 2; Latin ones from 1 to 3.

1 for 1=
0 for i#j

Kronecker Delta: §;; = {

Summation convention: Automatic summation over repated indices. E.g.:



MT30271 ELASTICITY: INTRODUCTION 2

Dot product: a-b = a;b; = axby (Dummy index!)

0;; ‘exchanges’ indices: a;0;; = a;.

Matrix-vector products: A -x = A;;z; = AimTm AT x — Az

No summation over indices in brackets: E.g. diagonal matrix: diag(A1, A2, A3) = Aiyd(iy;-

ui:u

e Comma denotes partial differentiation: E.g. 2 i
J

o)
d
e Some differential operators in index notation:

V~u:divu:um (11)

V¢ = grade = ¢ ; (1.2)
Vi = ¢ (1.3)



Chapter 2

Analysis of strain

2.1 The infinitesimal strain tensor

def?_rmeg_
V
undeformed contiguration/Z ;/

reference
configuration

Figure 2.1: Sketch illustrating the deformation of an elastic body: The body is displaced, rotated and
deformed.

e Lagrangian description: Label material points by their coordinates before the deformation (i.e. in
the reference configuration).

e Displacement field: The material particle at position r; = z; before the deformation is displaced to
R; after the deformation:

RZ‘ :T¢+ui(zj). (21)

e The deformation changes material line elements from dr; (= dx;) to dR;:

dR; = dr; + 24

dz;. (2.2)
s,
e We will restrict ourselves to a linearised anlysis in which the displacement derivatives are small, i.e.
Ou;
< 1. 2.3
‘a% (2.3)
U g;j is the displacement gradient tensor:
Ou;
where
1/0 0
¢y = 3 (8: GZZ) =ej; is the strain tensor and (2.5)
1/0 0
Wiy = 5 ( Z; — 81;1) wj;  is the rotation tensor. (2.6)

w
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e Displacements in the vicinity of r:

’U,Z'(I‘ + dI‘) = uz(r) + wijdxj + eijdzj (27)
—— —— N——
Rigid Body Rigid Body Pure
Translation Rotation Deformation

2.2 Rigid body rotation

e For e;; =0 (2.2) and (2.7):
dR =dr +w x dr (2.8)

where w = (w32, wis,w21)T. Represents rigid body rotation for |wij| < 1.
2.3 Pure deformation

2.3.1 Extensional deformation

e During the deformation the line element dr; = ds n; is stretched to dR; = dS N; (n and N are unit

vectors).
def%)_rmeé‘:it )
undeformed contiguratt
reference |
configuration

.

0
o

7 v
Yy, /%z

%//f/ s

Figure 2.2: Sketch illustrating the extension (and rotation) of material line elements during the deforma-
tion of an elastic body.

e The normal strain e, is the relative extension of the line element ds n:

_dS —ds

T = eynany (2.9)

€n
e The e(;)(;) are the normal strains along the coordinate axes.

2.3.2 Shear deformation

e Consider the change of the angle between two material line elements dr) = ds(Wn® dr(® =
ds?n() which are orthogonal to each other in the undeformed state, (drfl)dr?) = 0). Before the
deformation: ¢ = w/2. After the deformation (see Fig. 2.3):

cos ¢ = 2egnyn?. (2.10)

o The e;; for i # j are the shear strains w.r.t. the coordinate axes.

2.4 Principal axes/strain invariants

e The strain tensor gives the strains relative to the chosen coordinate system. Rotation of the
coordinate system to a new one, such that

T; = aj;x; where a;jar; = 6 (orthogonal matrix, AT = A1) (2.11)
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undeformed deformed
reference configuration
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Figure 2.3: Sketch illustrating the shear deformation, i.e. the change in the angle between two material
line elements during the deformation of an elastic body.

transforms the components of the strain tensor to:

€i; = aigeray (symbolically E = AEAT). (2.12)

o There exists a special coordinate system (principal azes) in which ¢;; = 0 for i # j.
o The principal axes are the normalised eigenvectors of e;;.

e The normalised eigenvectors form the rows of the transformation matrix a;; to the coordinate
system formed by the principal axes.

o The eigenvalues of e;; are the principal strains, i.e. the strains in the directions of the normal axes.

e The maximum normal strain, maxe,, (max. over all directions n) is given by the maximum
principal strain.

e The strain tensor has three invariants (i.e. quantities that are independent of the choice of the
coordinate system):

— the dilation: d = e;; which represents the relative change in volume
d=e; = (dV —dv)/dv (2.13)

— the determinant: dete;;.

— and a third quantity: 1/2(e;;je;; — esiej;)

2.5 Strain compatibility

e Equation (2.5) expresses e;; in terms of a given displacement field u;.

o The inverse problem: e;; only describes a continuous deformation of a body (i.e. no gaps or overlaps
of material develop during the deformation) iff:

€ijkl + €kt ij — €kjit — €itkj =0 (2.14)

This represents 3* = 81 equations but only the ones corresponding to the following six parameter
combinations are non-trivial and distinct:

WIN| | —
W N DO =
wl|w| |~
WlW|I N~
W NN

—| | =
DO N |

o Geometrical interpretation which motivates the derivation of eqns. (2.14): e;; determines the
deformation of infinitesimal rectangular (cubic in 3D) blocks of material. After the deformation,
the individually deformed blocks of material (deformed according to their local value of e;;) must
still fit together to form a continuous body.
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un%%f,%ﬁgﬁaﬁ%fﬁ ence deformed configuration
path (i)

L I 1b

path (1)

Figure 2.4: Sketch illustrating the strain compatibility condition.

2.6 Homogeneous deformation

o A deformation for which
3ui

0z

throughout the body is called a homogeneous deformation.

= const.

Examples:
Simple extension E.g. e1; = e, e;; = 0 otherwise.
Uniform dilation e;; = egd;; (spherically symmetric).

Simple shearing E.g. e;2 = ea1 = e, e;; = 0 otherwise.

(2.15)



Chapter 3

Analysis of stress

3.1 The concept of traction/stress

o If AF is the resultant force acting on a small area element AS with unit normal n, then the traction
(stress) vector t is defined as:

(3.1)

Figure 3.1: Sketch illustrating traction and stress.

3.2 The stress tensor

e The stress vector t depends on the spatial position in the body and on the orientation of the plane
(characterised by the normal vector):
ti = Tijnj, (32)

where 7;; = 7j; is the stress tensor.

e On an infinitesimal block of material whose faces are parallel to the axes, the component 7;; of the
stress tensor represents the traction component in the positive i-direction on the face x; = const.
whose normal points in the positive j-direction (see Fig. 3.2).

3.3 The equations of equilibrium/motion

e The equations of equilibrium for a body, subject to a body force (force per unit volume) Fj is

anj
— 4+ F; =0. .
o, + 0 (3.3)

e Including inertial effects via D’Alembert forces gives the equations of motion:
871-3- 82’(“'

Fi: )
oz, T o

(3.4)
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X2 Xl XZ

Figure 3.2: Sketch illustrating the components of the stress tensor.
where p is the density of the body and ¢ is time.

3.4 Principal axes/stress invariants

e The stress tensor is real and symmetric, hence all considerations in section 2.4 apply to the stress
tensor as well (transformation to different coordinate systems, principal axes, max. stress and
invariants).

e In particular, we will denote the first invariant (the trace of the stress vector) by

3.5 Homogeneous stress states

e Analogous to homogeneous deformations (see section 2.6): Examples:
Uniaxial stress E.g. 71 = Tp, 7;; = 0 otherwise.
Hydrostatic pressure 7;; = Pyd;; (spherically symmetric).

Pure shear stress E.g. 712 = 11 = Tp, 7;; = 0 otherwise.



Chapter 4

Elasticity & constitutive equations

4.1 The constitutive equations

o The constitutive equations determine the stress 7;; in the body as function of the body’s deforma-
tion.

Definition: A solid body is called elastic if
Tij (@, t) = 7 (et (@n, t)). (4.1)
i.e. if the stress depends on the instantaneous, local values of the strain only.

e For small strains, a Taylor expansion of (4.1) gives:

aTij
Tig = Tijlegmo P €kl (4.2)
—— €kl e =0
Initial Stress 7). M
) E'L]k‘l
e If the reference configuration coincides with a stress free state, then T?j = 0 and we obtain Hooke’s
law:

Tij = Eijrier- (4.3)

Definition: A solid body is called homogeneous if E;jj; is independent of x;.
Definition: A solid body is called isotropic if its elastic properties are the same in all directions.
e For an isotropic homogeneous elastic solid:
Eijrr = M0ijont + 2pdin0, (4.4)
where A and p are the Lamé constants.

e Stress-strain relationship for an isotropic homogeneous elastic solid:

Tij = Adij ki 241, (4.5)
=d
and in the inverse form: \
1
ii = — | 0505 — ————0;: 01 4.6
€ij 2M< k01 B+ 20) jkl>Tkl (4.6)
Dijki
so that
eij = Dijkﬂkl. (47)
Written out:
1 A

€ij = —Tij — —————0i; T 4.8
Top Y 2u(3N + 2u) J\_]%C/ (48)
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e For an isotropic homogeneous elastic solid the principal axes of the stress and strain tensors coincide
and

0 =T = (BA+2u)d = (A + 2u)egk (4.9)
4.2 Experimental determination of elastic constants

|. Simple Extension [1. Simple Shear

T T
DO:VQ* D+AD

L L+AL

Q
-

T

Figure 4.1: Sketch illustrating the two fundamental experiments for the determination of the elastic
constants.

4.2.1 Experiment I: Simple extension of a thin cylinder

e Observations:

AL
T=FA— (4.10)
L
ie.
733 = E@gg (411)
(since ez3 = AL/L) and
fn _ 22 _ (4.12)
€33 €33

where €11 = €22 = AD/D

e F and v are Young’s modulus and Poisson’s ration, respectively.

4.2.2 Experiment II: Simple shear

e Observation:
T=Gy (4.13)
i.e.
T2 = G 2eq2. (4.14)

e (G is the material’s shear modulus.

4.2.3 Constitutive equations in terms of £ and v

Tij = e;; + (Sij exk | - (415)

d

v
1+v 1—-2v

e Note that materials with v = 1/2 are incompressible, i.e. d = 0.

eij == | A +v)m; — V(Sijlk/l_c/ : (4.16)
o
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4.3 Relations between the elastic constants

A= |p=G= E = V=
B2 )
A A H - /\ﬂz# 2(\+41)
)\, U )\ )\(12—VQI/) (1+V)(3—2V))\ U
£—2 E—2u
I, E MguE—EM) ’LEL E o
d femie=ni e 1 v

11



Chapter 5

The equations of linear elasticity

5.1 Summary of equations

e Strain-displacement relations:

eij = 5 (uij +u ) (5.1)
e Equilibrium equations/equations of motion:
82ui
Tijg T =p pYe (5.2)
e Constitutive equations:
Tij = Aéijekk + 2#61-]' (53)
5.2 Displacement formulation: The Navier-Lamé equations
e Solve for the displacements:
82ui
()\ + M)Uk,ki + pui e+ F=p o2 (5.4)
or symbolically:
. 2 0%u
(A + p) grad div u 4+ puV u+F:pW, (5.5)
which is equivalent to:
0%u
(A4 2u) grad div u — g curl curl u+ F = P o (5.6)

e This is a system of three coupled linear elliptic PDEs for the three displacements wu;(z;).

5.3 Stress formulation: The static Beltrami-Mitchell equations

e For static deformations, we have

1- 1-
H—Z Tiij; +Fii =0 or symbolically H—ZVQG +div F =0. (5.7)
0,55

and the stresses fulfil the Beltrami-Mitchell equations:

1 v
Tijkk + 57— Tkk,ij +—5ij Fk,k Jer’i + Fiyj =0. (5.8)
~— 1+v —— 1—v ~—
V27ij 0,ij div F

e (5.8) represents a system of six coupled linear elliptic PDEs for the six stress components 7;;(z;).
When these have been determined, the strains can be recovered from (4.6) or (4.16). Then the
displacements follow from (5.1). They are only determined up to arbitrary rigid body motions.

12
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5.4 Simplifications for F = const.:

For constant (or vanishing!) body force, the stress, strain and displacement components are bihar-
monic functions,
Ui jikk =0 Tijrkn =0 e pen =0 (5.9)

or symbolically:
V4U. =0 V4Tij =0 v4€ij =0. (510)

The dilation and the trace of the stress tensor are harmonic functions:
Ujjkk = dkk =0 Tjjre =0k =0 (5.11)

or symbolically:
Vid=0 V?0=0 (5.12)

Note that in (5.4) — (5.8) F acts as an inhomogeneity in a system of linear equations. The system
can be transformed into a homogeneous system for u;, = u—u,, (with different boundary conditions)
if a particular solution u, (which does not have to fulfil the boundary conditions) can be found.

5.5 Boundary conditions:

Displacement (Dirichlet) boundary conditions: Prescribed displacement field ugo)'

wilop = u” (5.13)

%

)

Stress (Neumann) boundary conditions: Prescribed (applied) traction tz(-o on boundary. Note that

n; is the outer unit normal vector on the elastic body.
0
tilop = Tijnjlop = tE ) (5.14)

Mixed (Robin) boundary conditions — ‘elastic foundation’ represented by the stiffness tensor k;;.

Physically, this implies that the traction which the elastic foundation exerts on the body is propor-
(0)

tional to the boundary displacement. This can be combined with an applied traction ¢; as in the

Neumann case.
(ti + kiju;) lop = (rijn; + kijuj) lop = £ (5.15)
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Governing Equations in Cylindrical Polar Coordinates
e r1 =x=rcosf, xo =y =rsinf, x3 =2 = z.
u = (up,ug,u;), e=(e;), 7=(m;), wherei,j=r0,z.

Vector calculus:

af 19f . Of. 10(ru,) 1% Ou,

gradf=Frt 05905, % dvu=TT5 T T T o
_ (10u., Oup) . Oou, Ouy\ » 19(rug) 10u,\ .
Curl“‘(?a&‘@)”(m_ar)‘”(i ar  ro9)”

Stress-strain relations have the same form as in Cartesian coordinates:

Tij = Adj; divu + 2pe;;, ,j=r10 z.

Stress-displacement relations:

14

a il . 16 r . 6 z
TTT:)\divu—&—Zui, To9 = Adivu + 2u —ﬂ—i—u— ,  Tar = Adivu+4 2u Y ,
or r 00 r 0z
g Tor  Oug  ug  10ur Trn Ty Ou,  Oup  Ter  Tg  10u,  Oug
wop or roorodd’ o ou Or oz w p T 00 0z
e Strain-displacement relations:
Ou, 10up  wu, ou,
Err = s €00 = — - €2z = (7
or = 00 r 0z
Oug ug 10u, ou, Ou, 10u, Oug
27":2 r= 5. — —_ - 3 27"2:27;7": ; 2z:2 z = a_
G0 S = G T TR ae TS T T S0 T AT 1e Ty

Equilibrium equations (statics): for the displacement formulation, use Navier’s equation,
(A +2p) graddivu — pcurlcurlu + F = 0,
whereas for the stress formulation, use

aTrr l 87‘7«9 aT’!‘Z Trr — T66

F. =

or r 00 + 0z r + 0
Otrg 107199 079, 2 -

or + r 06 + 0z + o T =0
Oty 1079, 01 1 B

or + r 00 + 0z + P tEo=0

e Stress boundary conditions: these are when t is prescribed. We have, from ¢; = 1,7,

t, = ﬁ’I‘T’I‘T + 'ﬁ‘GTTO + 'ﬁ‘zTrz
to = NpTro + NoTos + N2Tox

t, = ﬁr'rrz + ﬁGTOZ + ﬁz'rzz
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Governing Equations in Spherical Polar Coordinates
e 1 =x=rsinf cosg, xo =y =rsind sing, r3 = z = rcosd.

u = (ur,ug,ug), e=I(ey), 7=I(7;), wherei,j=r0,4¢.

e Vector calculus: af 10f 1 of
gradf:ErJr;% rsin@ﬁ_q/)qb7

divu = 1 {2( 2sin O u,.) + 2(7’sir16’ug) + 2(7’u¢)},

r2sinf | Or 00 0¢
1 r rf rsinfo¢
_ ) o) o)
curlu = 7’2 Sind ar 90 8_(15
r TUp TSIDG U

e Stress-strain relations have the same form as in Cartesian coordinates:

Tij = )\(Sz] diVH+2[LL€Z'j, ’L,] :T,9,¢.
e Stress-displacement relations:

" 2
Trr = Adivu + QM—%U ,  Tpg = Adivu + i (_(9ue + ur) ,
r

r 00
20 1 Oug T Ter Oug ug 10u,

= Adivu + — — cot 0 v _7_ Y4
Té$ v r (sin9 0¢ H oo 1 or r + r 00’
Trey  Ter L Oup  Ouy Uy Top _ Tep 1 Oupg  10uy ugcotd
w p rsinf 9o or r’ w  p rsinf 9¢  r 00 ro

e Strain-displacement relations:
ou, 10up  u, 1 Oug ur ugcot
Erpr = e = — —— — e = it —
TT or’ 06 =7 00 r’ 90 = sing ol r ro
Oug ug 10u, 1 Our Ougp ug

2 rg = 2 == — — - 2 re — 2 r — N 9
cro c0 or r r 00 ere ce rsing J¢ or r
1 Oupg 10us wugcoth

2 =92 =
Ceo ¢ = T sing ap  r 00 r

e Equilibrium equations (statics): for the displacement formulation, use Navier’s equation,
(A 4+ 2u) graddiva — pecurlcurlu+ F = 0,

whereas for the stress formulation, use

Orrr | 10709 N 1 OTrg  2Trr — Too — Tog + COL 0 Trg YE = 0
or r 00 rsinf O¢ r
Orvo 1070 1 O7gs | 37ro + (100 — Tyg) coOt O
1 By = 0
or 700 T rsm0 96 r e
07 1 079g 1 O7py 3Ty + 2794 cOt O
1 F, = 0
or "7 00 rsm0 06 r T

e Stress boundary conditions: these are when t is prescribed. We have, from ¢; = 1,7,

tr = ﬁrTrr + ﬁOTTO + ﬁdﬂ—rqb
to = NpTro + NoToo + NepTog
g = NypTrgp +NeTogp + NeToo



Chapter 6

Plane strain problems

6.1 Basic equations

Definition: A deformation is said to be one of plane strain (parallel to the plane x3 = 0) if:

uz =0 and wuy,=1u

alzp)- (6.1)

e There are only two independent variables, (1, z2) = (x,y).

e Plane strain is only possible if F3 = 0.
e Only the in-plane strains are non-zero, e;3 = 0.

e Stress-strain relationship:

Tag = Aageyy + 2p€ag. (6.2)
2ueas = Tap — Voag Tyy (6.3)
0
T33 = UTyy = v (6.4)
e Static equilibrium equations:
TaB,3 + F,=0 (6.5)
e Compatibility equation: Only one non-trivial equation
0= e11,22 + e22,11 — 2e12,12 (6.6)
Formulated in terms of stresses: B
(1—=v)0 qa + Foo =0, (6.7)
or symbolically o
(1-v)V?0 + div F =0, (6.8)
where V2 = 92 /822 + 9%/0y>.
6.2 The Airy stress function
e For F = 0 the in-plane stresses can be expressed in terms of the Airy stress function ¢:
) ¢ ¢
. . = — ) 6.9
T11 8y2 y  T22 Ox2’ T12 92y ( )
e The Airy stress function is biharmonic:
= o )
Vi = — — =0. 6.10
¢ ozt 0x20y% = Oyt (6.10)

16
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6.3 The stress boundary conditions in terms of the Airy stress
function

e The applied tractions along the boundary 0D (parametrised by the arclength s) are given in terms
of the Airy stress function ¢ by

d (0¢
_ _ (9 11
no =t = 5 (57) (6.11)
and ny
ta(s) = ty(s) = s <%> . (6.12)
e Hence, if t,(s) is given, the boundary conditions for ¢ can be derived by the following procedure:

1. Integrate (6.11) and (6.12) along the boundary (w.r.t. s). This provides (9¢/dx,d¢/dy)" =
V¢ on the boundary.

2. Rewrite V¢ = 0¢/0s et + Op/On e, where e; and e,, are the unit tangent and (outer) normal
vectors on the boundary. This provides d¢/ds and d¢/In along the boundary.

3. Integrate 0¢/ds along the boundary (w.r.t. s). This provides ¢ along the boundary.

e After this procedure ¢ and 9¢/0n are known along the entire boundary and can be used as the
boundary condition for the fourth order biharmonic equation (6.10).

e Note: any constants of integration arising during the procedure can be set to zero.

e For a traction free boundary, t,(s) = 0, we can use the boundary conditions:

¢=0 and 9¢/On=0 ondD (6.13)

6.4 The displacements in terms of the Airy stress function

e For a given Airy stress function ¢(zx,y), the displacements u(x,y), v(x,y), are determined by

ou =9 9?¢
ov N 0%¢
and 5 5 5%
U v
a2 =27 1
. (3y + 8z) 0x0y (6.16)

e One way to determine the displacement fields from these equations is given by the following proce-
dure:

1. Get p(z,y) = V2¢(z,y) from the known ¢(z, y).

2. p(z,y) is a harmonic function; determine its complex conjugate ¢(x,y) from the Cauchy-
Riemann equations:

Idp _ 0Oq Ip 9q

—=—-— and —=-——

or Oy oy Oz
3. Integrate f(z) = f(x 4+ iy) = p(z,y) + i p(z,y) and thus determine P(x,y) and Q(x,y) from

(6.17)

F(z) = /f(z)dz =: P(z,y) +1i Q(z,y). (6.18)
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4. Then the displacements are given by:

1 96
ulr.y) =5 (0= Pay) -2+ atey | (6.19)
rigid body
motion
and ) 96
v(z,y) = oM {(1 —v) Qx,y) — 7 + b—cz } (6.20)
rigid body
motion
6.5 Equations in polar coordinates
e The biharmonic equation in polar coordinates:
~ 92 190 1 9*21[0% 10 1%
4 - | e 2 de, %, 29 21
Vie(r ¢) [87"2 + r or + r? 8(,02} {87"2 ror r? 8(,02} (6.21)

~ 2 1 1 1
V4¢(7’, 30) = QS.,’I“T’I“T + ;d’,rrr - T'_Q(d),ﬂ“ - 2¢,TTL,0L,0) + ﬁ((b-ﬂ“ - 2(775-,7“50&,0) + r_4(4¢-,tptp + 2¢#P<P<P<P) (622)

e For axisymmetric solutions:

~ 1 1
Vo) = 1 [ (30,1, ) ] (6.23)
T T e
~ 2 1 1
4 = rrrr + =Py — —=@ gy + —& .24
v ¢(T) ¢,7777 + r¢,777 T2 ¢7,77 + 7’3 ¢,7 (6 )
e Stresses:
1 0% 10¢
R (6.25)
0%¢
TLPSO = W (626)
106 1 8% 8 [10¢
o= Lo 1 __9 (1) 2
Tre r20¢ 1 Ordp or \r 9y (6.27)
6.6 Particular solutions of the biharmonic equation
6.6.1 Harmonic functions
e Obviously, all harmonic functions also fulfil the biharmonic equation.
6.6.2 Power series expansions
d(w,y) = > ana'y" (6.28)
ik

e Any terms with i + k& < 2 do not give a contribution.

e Any terms with i + k < 4 fulfil V4¢ = 0 for arbitrary constants a;;. Special cases are:

| o(z,y) || Tox | Tyy | Toy | Interpretation: |
aga Y2 2 agp2 0 0 constant tension in x-direction
ayl TY 0 0 —ai pure shear
asg T2 0 2 asg 0 constant tension in y-direction
aps > || 6 agsy 0 0 pure x-bending
asp x5 0 6 asgx 0 pure y-bending

e Linear combinations provide stress fields for combined load cases.
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6.6.3 Solutions in polar coordinates

e The general axisymmetric solution:

o(r) = Ag + Bor* + CoInr + Dor? Inr (6.29)

e The general separated non-axisymmetric solution:

For n=1:
B 3
d(ryp) = Ar+ =+ Cr° 4+ Drlogr | cos(p)
r
b 3 .
+(ar+—+cr° +drlogr | sin(p) (6.30)
r
For n > 2:
3(r,0) =3 (Anr™ + Bor ™ + Cor™2 + Dyr™™+2) cos(ny)
n=2
+ (anr™ + bpr ™" + o™ + dyr " ?)  sin(ng) (6.31)

6.7 St. Venant’s principle

Section 6.6 provides many solutions of the biharmonic equation. The free constants in these solutions
have to be determined from the boundary conditions. This is the hardest part of the solution! ‘Good’
approximate solutions can often be obtained by using:

St. Venant’s principle

In elastostatics, if the boundary tractions t on a part dD; of
the boundary dD are replaced by a statically equivalent traction
distribution t, the effects on the stress distribution in the body are
negligible at points whose distance from 0D is large compared to
the maximum distance between the points of 0D;.

‘Statically equivalent’ means that the resultant forces and moments due to the two tractions t and t
are identical. Hence, the traction boundary conditions are not fulfilled pointwise but in an average sense.



