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4 Reminder: Ordinary differential equations (ODEs)

• Ordinary differential equations (ODEs) are equations that relate the value of an unknown
function of a single variable to its derivatives.

4.1 Examples

1. Equation of motion for a harmonic oscillator: The equation

m
d2x

dt2
+ cx(t) = F (t)

is an ODE for the position x(t) of a particle of mass m, mounted on a spring of stiffness
c, when subjected to a time-dependent force F (t). This is a second-order ODE because
the highest derivative of the unknown function, x(t), with respect to the independent
variable, t, is of second order.

2. Transverse deflection of a string under axial tension: The equation

T
d2y

dx2
= p(x)

is an ODE that describes the transverse deflection y(x) of a pre-stressed elastic string
(under axial tension T ), loaded transversely by a pressure p(x). This is a second-order
ODE because the highest derivative of the unknown function, y(x), with respect to the
independent variable, x, is of second order.

3. Radioactive decay: The equation

dm

dt
= −λm(t)

is an ODE that describes how the mass m(t) of a radioactive material with decay rate λ
decays. This is a first-order ODE because the highest derivative of the unknown function,
m(t), with respect to the independent variable, t, is of first first order.
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4.2 Boundary and initial value problems

• ODEs must be augmented by additional constraints in the form of boundary or initial
conditions. For second-order ODEs we can have either

Boundary conditions: Boundary conditions specify the value of the unknown function
at the “left” and “right” ends of the domain. The combination of an ODE and
its boundary conditions is known as a boundary value problem. Boundary value
problems typically arise in applications where the independent variable is a spatial
coordinate, as in Problem 2 above. In this application it is “obvious” that the
ODE (which describes the string’s local equilibrium) must be augmented by the
specification of the transverse deflection at the ends of the string – the string cannot
just “float in space”.

or

Initial conditions: Initial conditions specify they value of the unknown function and
its first derivative at some “initial time”. Initial value problems typically arise in
applications where the independent variable is time, as in Problem 1 above. In this
application it is “obvious” that the ODE (which describes the temporal evolution of
the particle’s position) must be augmented by the specification of its initial position,
x(t = 0), and its initial velocity, dx/dt|t=0.

4.3 The solution of a boundary/initial value problem

• The solution to a boundary/initial value problem is any function that satisfies the ODE
and the boundary/initial conditions.

• =⇒ It is easy to check if a function is a solution of a given boundary/initial value problem.
However, it is not necessarily easy to find that solution from first principles.

• You have learned lots of techniques for the solution of the ODEs (separation of variables;
integrating factor; ...) in your first year.
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5 Partial differential equations (PDEs)

• Partial differential equations (PDEs) are functions that relate the value of an unknown
function of multiple variables to its derivatives. In this course we will discuss four PDEs
that arise in many science and engineering applications.

• For each PDE we will briefly discuss some of its physical background, the required bound-
ary/initial conditions, and general properties of its solutions.

• Remember that, as in the case of ODEs, it is easy to check if a function is a solution of
a given boundary/initial value problem. Simply check:

1. Does the function satisfy the PDE?

2. Does the function satisfy the boundary/initial conditions?

If the answer to both tests is positive, the function is a solution.

• Example:

Consider the boundary value problem comprising the PDE

∂2u

∂x2
+

∂2u

∂y2
= 4

in the unit disk D =
{

(x, y)
∣

∣ x2 + y2 ≤ 1
}

, subject to the boundary condition

u
∣

∣

∂D
= 1,

where the domain boundary ∂D is given by ∂D =
{

(x, y)
∣

∣ x2 + y2 = 1
}

.

It is easy to verify that u(x, y) = x2 + y2 is a solution of the boundary value problem:

1. Does the function satisfy the PDE?

– Yes, because
∂2u

∂x2
= 2 and

∂2u

∂y2
= 2,

so
∂2u

∂x2
+

∂2u

∂y2
= 4,

as required.

2. Does the function satisfy the boundary condition?

– Yes, because
u
∣

∣

∂D
=

(

x2 + y2
)
∣

∣

x2+y2=1
= 1,

as required.
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5.1 The 1D advection equation

5.1.1 The PDE and its applications

• The 1D advection equation
∂u

∂t
+ w(x, t)

∂u

∂x
= 0

is a PDE for the unknown function u(x, t). The equation arises in many transport pro-
cesses where u(x, t) represents, e.g. the concentration of a chemical that is advected by a
one-dimensional flow field whose local velocity is given by the “wind” w(x, t).

• The 1D advection equation requires an initial condition of the form

u(x, t = 0) = u0(x),

where u0(x) is given.

• If the transport occurs in a finite domain, e.g. x ∈ [XL, XR], and if w(x, t) > 0, a
boundary condition of the form

u(x = XL, t) = uL(t),

where uL(t) is given, must be specified. In the physical example referred to above this
boundary condition specifies the concentration at the “inflow boundary”.

5.1.2 Solution in an infinite domain for constant “wind”

• If the “wind” w is constant, the solution of the 1D advection equation has the form

u(x, t) = u0(x − wt)

where u0 is the function that specifies the initial condition. This shows that the initial
profile is simply “swept along” by the “wind” without changing its profile.

u(x,t=1) u(x,t=2)

x

u(x,t)

w

u(x,t=0) = u (x)
0

Figure 6: Solution of the 1D advection equation with constant wind. The initial profile u(x, t =
0) = u0(x) is “swept along” by the “wind” w.
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5.2 The Laplace equation

• The Laplace equation
∂2u

∂x2
+

∂2u

∂y2
= 0

is a PDE for the unknown function u(x, y), defined in a two-dimensional domain D.

• The PDE describes steady diffusion processes, and governs, for instance, the distribution
of temperature in a block of material whose surface temperature is controlled.

• The 2D Laplace equation requires a boundary condition on all domain boundaries, i.e.
the solution u(x, y) must satisfy

u
∣

∣

∂D
= u0,

where the function u0 is given. In the physical application referred to above, u0 is the
prescribed temperature distribution on the surface of the body.

5.3 The 1D unsteady heat equation

• The 1D unsteady heat equation
∂u

∂t
=

∂2u

∂x2

is a PDE for the unknown function u(x, t).

• The PDE describes unsteady diffusion processes, and governs, for instance, the spatial
and temporal evolution of the temperature in a thin, well-insulated metal bar.

• The 1D unsteady heat equation requires an initial condition of the form

u(x, t = 0) = u0(x)

where the function u0(x) is given.

• If solved in a finite domain, e.g. in the 1D domain D =
{

x
∣

∣ XL ≤ x ≤ XR

}

, we also
require boundary conditions at both ends of the domain, i.e.

u(x = XL, t) = uL(t) and u(x = XR, t) = uR(t),

where the functions uL(t) and uR(t) are given.

• In the physical application referred to above, u0(x) describes the initial temperature
distribution in the metal bar while uL(t) and uR(t) describe the prescribed temperature
at its two ends.
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5.4 The 1D linear wave equation

5.4.1 The PDE and its applications

• The 1D linear wave equation
∂2u

∂t2
= c2

∂2u

∂x2

is a PDE for the unknown function u(x, t). The constant c is the “wave speed” whose
role we shall discuss below.

• The PDE describes travelling-wave phenomena, and governs, for instance, the transverse
displacements of an oscillating guitar string.

• The 1D linear wave equation requires two initial conditions, specifying the initial value
and the initial time-derivative of the unknown function, respectively, i.e.

u(x, t = 0) = u0(x) and
∂u

∂t

∣

∣

∣

∣

t=0

= v0(x)

where the functions u0(x) and v0(x) are given.

• If solved in a finite domain, e.g. in the 1D domain D =
{

x
∣

∣ XL ≤ x ≤ XR

}

, we also
require boundary conditions at both ends of the domain, i.e.

u(x = XL, t) = uL(t) and u(x = XR, t) = uR(t),

where the functions uL(t) and uR(t) are given.

• In the physical application referred to above, u0(x) and v0(x) describe the initial position
and the initial velocity of the guitar string, while the boundary conditions uL(t) = 0 and
uR(t) = 0 indicate that the ends of the string are fixed to the rigid body of the guitar.
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5.4.2 The general solution – travelling waves

• The general solution of the 1D linear wave equation has the form

u(x, t) = f(x − ct) + g(x + ct)

where f and g are arbitrary functions. The two functions represent two travelling waves,
one moving to the right with speed c, the other one moving to the left with speed −c.

x

u(x,t=0) = f(x)+g(x)
u

x

u u(x,t) =

f(x−ct)+g(x+ct)

c c

Figure 7: Solution of the 1D linear wave equation. The initial profile generates two travelling
waves.


