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Note:

This part of the course, dealing with functions of two variables and partial differential
equations (PDEs), is taught from week 5.

The course web page provides online access to the lecture notes, example sheets and other
handouts and announcements.

Most of the material will be taught in ”chalk and talk” mode. If OHP transparencies are
used, copies will be made available (after the lecture) on this page.

Please consult the service course page
http://www.maths.man.ac.uk/service

for details on how to get hold of material for the other parts of the course.

Please note that the lecture notes only summarise the main results and will generally be
handed out after the material has been covered in the lecture. You are expected take
notes during the classes.
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1 Reminder: Functions of a single variable

A function y = y(z) is a function of a single variable.

Examples
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Figure 1: Functions of a single variable: y(z) = 2% and y(x) = sin x.

1.1 [Ordinary] derivatives

First derivative:
r_dy

y_da:

e The first derivative represents the slope of the curve y = y(z).

e In general, ¢ is a function of x too.

oty (dy
dz? dx \dx

e The second derivative is the derivative of the first derivative.

Second derivative:

e The second derivative indicates the curvature of the curve y = y(x).

(- (2))

e Higher derivatives are defined recursively: The n-th derivative is the derivative of
the n — 1-th derivative.

Higher derivatives:
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1.2 Stationary points: Maxima and minima

Condition for a stationary point: .

e The function y(z) has a “stationary point” at xq if

dy

=0
dx ’
zo

where the (...)|,, notation indicates that the expression in the round brackets is to
be evaluated at z = xg.

Classification of stationary points: .

e The nature of a stationary point is determined by the function’s second derivative:

&2y >0 = Local minimum
T <0 == Local maximum
Tla | =0 = Test is not conclusive (curve too flat; e.g. at an inflection point.)
(a) A local minimum (b) A local maximum (¢) An inflection point

Figure 2: Generic stationary points for a function of one variable.
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1.3 Taylor series:

e The Taylor series of a function y(x) about a point x = xy provides an approximation of
the function in the neighbourhood of x:

2 3
y(xo—l—e):y(xo)—i—;i—zLo e—i—%%m %%m S
for “small” |e|.
Here n! =1 x2x3 X .... x (n — 1) X n is the factorial.
The Taylor expansion may also be written as
dy 1 d%y , 1 d% 3
y(@) = y(xo) + dr . (56’—370)+§ P . (z — o) T3 d . (x —x0)” +

for “small” values of |x — z¢|.
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2 Functions of multiple [two]| variables

In many applications in science and engineering, a function of interest depends on multiple
variables. For instance, the ideal gas law p = pRT states that the pressure p is a function of
both its density, p and its temperature, T'. (The gas constant R is a material property and not
a variable).

We will now show how to extend the analysis of functions of a single variable to functions
of multiple variables. We will restrict ourselves to the case of two variables, i.e. functions of
the form

z = z(z,y),
the extension to larger numbers of variables being relatively straightforward, apart from the
fact that functions of three and more variables are somewhat harder to visualise...

2.1 Examples

Here are some plots of functions of two variables:

COS T SIn Y

z(z,y)

Figure 3: Functions of two variables: z(z,y) = zy and z(z) = coszsiny.
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2.2 Partial derivatives

Functions of multiple variables can be differentiated with respect to either of their variables, the
other variable being understood to be held constant during the differentiation. Such derivatives
are known as partial derivatives and are distinguished from ordinary derivatives by using a 0
instead of a d.

First derivatives: .

e For a function of two variables there are two partial derivatives

0z

ar @
and

0z

8_3/ = 2.

e In general, the first derivatives are functions of x and y too.

Second derivatives: .

e For a function of two variables there are three second partial derivatives, defined as
0 (92 _
922~ r \ozr )~
Pz 0 [0z
—_— = — | — =z
oy? Oy \ Oy v
0 _ 0 (0:\_
oxoy Oz \oy)

Oz 0z
oxdy  Oydx

9 (0:\_ 0 (0:
ox \oy) 0Oy \ox

and the mixed derivative

where we usually! have

1.e.

Higher derivatives: .
e Higher derivatives are again defined recursively, e.g.

o’z 0P @
0x30y?  0x3 \ Oy?

I'Mathematicians obviously love to construct esoteric functions for which this property doesn’t hold but it’s
rare to come across these in “real life”. Strictly speaking, you can only exchange the order of the differentiation
if the function z(x,y) is sufficiently smooth. Most functions are.

ete.
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2.3 Stationary points: Maxima and minima and saddles

Types of stationary points:

e Functions of two variables can have stationary points of different types:
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(a) A local minimum  (b) A local maximum (¢) A saddle point

Figure 4: Generic stationary points for a function of two variables.

Condition for a stationary point:

e The function z(x,y) has a “stationary point” at (xo,yo) if

% =0 and % = 0.
ox

(z0,y0) dy (z0,y0)

e This condition provides two equations for the two unknowns zo and y,. These
equations can have
— No solution, in which case the function z(z,y) has no stationary points.

— A unique solution, in which case the function z(z,y) has a single stationary
point.

— Multiple solutions, in which case the function z(x,y) has multiple stationary
points.



2M1 — Q-STREAM (Matthias Heil, School of Mathematics, Univ. of Manchester) 8

Classification of stationary points: .

e The nature of a stationary point is determined by the function’s second derivatives.
Here is a recipe for the classification of stationary points.

For each stationary point (xg, yo):

1. Determine the three second partial derivatives and evaluate them at the station-

ary point:
A:% , B:giyi , and Czﬁaa;zy .
(zo,y0) (z0,y0) (z0,y0)
2. Compute the “discriminant”
D= AB - C*
3. Classify the stationary point according to the following cases:
D <0 =  Saddle point

=—> Local minimum
= Local maximum
=  Test is inconclusive

D > 0 and 9%2/022 > 0
D >0 and 9%2/0x* < 0
D=0

or 9?z/0y* < 0

or 9?z/y? > OJ
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2.4 Taylor series:
2.4.1 The leading-order terms

e The Taylor series of a function z(x,y) about a point (xg,yo) provides an approximation
of the function in the neighbourhood of (¢, yo):

z2(wo+6,y0+0) = z(zo,%0) +

0z 0z
+ € — 0 +
O | (z4,0) Y | (zo.0)
1| 9% ) 0%z 0z
+ = | 73 + €6 + & |+
2! [ Ox* (zo,y0) 9z 0y (z0,y0) dy? (z0,y0)
for “small” values of € and 4.
As in the 1D case, this may also be written as
z(z,y) = 2(%o,y0) +
0z 0z
+ a— (SL’—I()) + a— (y—yo) +
T 1(z0.0) Y1(@o.0)
1 0%z 0%z 0%z
+ 5[ 92 (x —x0)® + 288 (x — o) (Yy—yo) + E (y—wo)* | +
’ L7 (20,90) LOY | (20,y0) Y™ (@o,0)
+

for “small” values of |x — x| and |y — yo|.

2.4.2 The general form of the 2D Taylor series

The general expression for the Taylor series in two variables may be written as

f(x—x(va_yO):Z{%Z(Z)mf%faw («T—xo)nk<y_y0>k}’
" k=0

() =o—wm

are the binomial coefficients. Recall that the n binomial coefficients ( 8 ) , ( 711 ) R ( Z )

may be obtained from the n-th row of Pascal’s triangle:

(1073/0)

where
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3 Example

We shall illustrate the various techniques by considering the function

Here is a sketch of the function:

2(z,y) = 2* + 3y — y* — 3.

Figure 5: Sketch of the function z(z,y) = 23 + 3y — y* — 3.

Partial derivatives: .

e The partial derivatives are:

Ox0y =0

10
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Stationary points: .

e The coordinates (g, yo) of any stationary points are given by the solution of the two

equations:
0
8—2 =322 -3 =
T 1 (@o,y0)
0z
Y (o.0)

[In the present example, these can be solved directly for g = 41 and yo = =+1,
as the first equation only contains xy and the second one only yy. In general, both
equations will contain both unknowns and then have to be solved simultaneously.]

We therefore have four critical points:
P1 - (1, 1) P2 == (1, —1) P3 - (—1, 1) P4 == (—1, —1)

e To classify the stationary points we evaluate the second derivatives in the following

table:
Point A=6xy| B=—6y, | C=0| D=AB—C?| Classification
P, — (1,1 6 6 0 36 Saddle
P, =(1,-1) 6 6 0 36 Local minimum
P;=(-1,1) -6 -6 0 36 Local maximum
P,=(-1,-1) -6 6 0 -36 Saddle

You should confirm these results by inspecting the plot shown at the beginning of
the examples.

Taylor Expansion: .

e Finally, we determine the Taylor expansion of z(z,y) about the point (z,y) = (2, 1),
where z(2,1) = 4. We start by evaluating the derivatives:

0z

hdad —9
ox @.1)

0z

hed -0
Y (21

0%z

— =12
ox? 2.1)

0%z

o 0

(2,1)

0%z
0x0y

(2,1)
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e In the vicinity of the point (z,y) = (2,1), i.e. for small values of € and d, the function
z(x,y) can therefore be approximated as

2x=2+ey=1+6) = <4,-/+ \9,-/ € T \Oz-/ 0+
2(2,1) &| &|
oz | (2,1) 9y l(2,1)
1 9 2
+i 12 €€ +2x_ 0 de + (—6) ¢ +
2, 2,
ng (2,1) a(r;ay (2,1) gng (2,1)

So

y(x =2+e6y=1+06) =4+ 9+ 66> — 36+ ...
or

y(r,y) =4+ 9(x —2) +6(x —2)* = 3(y — 1)* + ...
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4 Reminder: Ordinary differential equations (ODEs)

e Ordinary differential equations (ODEs) are equations that relate the value of an unknown
function of a single variable to its derivatives.

4.1 Examples

1. Equation of motion for a harmonic oscillator: The equation

d*x
mes + cz(t) = F(t)
is an ODE for the position x(t) of a particle of mass m, mounted on a spring of stiffness
¢, when subjected to a time-dependent force F'(t). This is a second-order ODE because
the highest derivative of the unknown function, x(t), with respect to the independent
variable, t, is of second order.

2. Transverse deflection of a string under axial tension: The equation

is an ODE that describes the transverse deflection y(z) of a pre-stressed elastic string
(under axial tension T'), loaded transversely by a pressure p(z). This is a second-order
ODE because the highest derivative of the unknown function, y(z), with respect to the
independent variable, x, is of second order.

3. Radioactive decay: The equation

dm

pri —Am(t)

is an ODE that describes how the mass m(t) of a radioactive material with decay rate A
decays. This is a first-order ODE because the highest derivative of the unknown function,
m(t), with respect to the independent variable, ¢, is of first first order.



2M1 — Q-STREAM (Matthias Heil, School of Mathematics, Univ. of Manchester) 14

4.2 Boundary and initial value problems

e ODEs must be augmented by additional constraints in the form of boundary or initial
conditions. For second-order ODEs we can have either

Boundary conditions: Boundary conditions specify the value of the unknown function

or

at the “left” and “right” ends of the domain. The combination of an ODE and
its boundary conditions is known as a boundary value problem. Boundary value
problems typically arise in applications where the independent variable is a spatial
coordinate, as in Problem 2 above. In this application it is “obvious” that the
ODE (which describes the string’s local equilibrium) must be augmented by the
specification of the transverse deflection at the ends of the string — the string cannot
just “float in space”.

Initial conditions: Initial conditions specify they value of the unknown function and

its first derivative at some “initial time”. Initial value problems typically arise in
applications where the independent variable is time, as in Problem 1 above. In this
application it is “obvious” that the ODE (which describes the temporal evolution of
the particle’s position) must be augmented by the specification of its initial position,
z(t = 0), and its initial velocity, dx/dt|—o.

4.3 The solution of a boundary /initial value problem

e The solution to a boundary/initial value problem is any function that satisfies the ODE
and the boundary /initial conditions.

e — It is easy to check if a function is a solution of a given boundary /initial value problem.
However, it is not necessarily easy to find that solution from first principles.

e You have learned lots of techniques for the solution of the ODEs (separation of variables;
integrating factor; ...) in your first year.
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5

Partial differential equations (PDEs)

Partial differential equations (PDEs) are functions that relate the value of an unknown
function of multiple variables to its derivatives. In this course we will discuss four PDEs
that arise in many science and engineering applications.

For each PDE we will briefly discuss some of its physical background, the required bound-
ary/initial conditions, and general properties of its solutions.

Remember that, as in the case of ODEs, it is easy to check if a function is a solution of
a given boundary/initial value problem. Simply check:

1. Does the function satisfy the PDE?

2. Does the function satisfy the boundary/initial conditions?
If the answer to both tests is positive, the function is a solution.

Example:

Consider the boundary value problem comprising the PDE

Pu o,
ox2  oy?

in the unit disk D = {(z,y) | #* + y*> < 1}, subject to the boundary condition

u}aD =1,

where the domain boundary 9D is given by D = {(z,y) | 2> +y* = 1}.

It is easy to verify that u(z,y) = 22 + y? is a solution of the boundary value problem:

1. Does the function satisfy the PDE?

— Yes, because
0u 0u
@ =2 and 8—y2 = 2,
SO
Pu  0*u
— 4+ — = 47
0x?  Oy?
as required.

2. Does the function satisfy the boundary condition?

— Yes, because
u‘aD = (SC2 + 92)‘12+y2=1 =1,

as required.
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5.1 The 1D advection equation
5.1.1 The PDE and its applications

e The 1D advection equation

is a PDE for the unknown function w(z,t). The equation arises in many transport pro-
cesses where u(x,t) represents, e.g. the concentration of a chemical that is advected by a
one-dimensional flow field whose local velocity is given by the “wind” w(z,t).

e The 1D advection equation requires an initial condition of the form

where () is given.

e If the transport occurs in a finite domain, e.g. x € [X, Xg], and if w(z,t) > 0, a
boundary condition of the form

u(r = Xp,t) = ur(t),

where up(t) is given, must be specified. In the physical example referred to above this
boundary condition specifies the concentration at the “inflow boundary”.

5.1.2 Solution in an infinite domain for constant “wind”
e If the “wind” w is constant, the solution of the 1D advection equation has the form
u(z,t) = uo(z — wt)

where ug is the function that specifies the initial condition. This shows that the initial
profile is simply “swept along” by the “wind” without changing its profile.

u(x,t)
u(x,t=0) = u (x) u(xt=1) u(x,t=2)

Figure 6: Solution of the 1D advection equation with constant wind. The initial profile u(x,t =
0) = ug(x) is “swept along” by the “wind” w.
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5.2

5.3

The Laplace equation

The Laplace equation
0%u N Pu
ox2  oy?

is a PDE for the unknown function u(z,y), defined in a two-dimensional domain D.

0

The PDE describes steady diffusion processes, and governs, for instance, the distribution
of temperature in a block of material whose surface temperature is controlled.

The 2D Laplace equation requires a boundary condition on all domain boundaries, i.e.

the solution u(z, y) must satisfy

where the function ug is given. In the physical application referred to above, ug is the
prescribed temperature distribution on the surface of the body.

The 1D unsteady heat equation

The 1D unsteady heat equation
ou  du
ot Ox?

is a PDE for the unknown function u(z,t).

The PDE describes unsteady diffusion processes, and governs, for instance, the spatial
and temporal evolution of the temperature in a thin, well-insulated metal bar.

The 1D unsteady heat equation requires an initial condition of the form

where the function ug(x) is given.

If solved in a finite domain, e.g. in the 1D domain D = {:c ‘ X <z < XR}, we also
require boundary conditions at both ends of the domain, i.e.

u(lr = Xp,t) =ur(t) and u(z = Xg,t) = ug(t),
where the functions uy () and ug(t) are given.

In the physical application referred to above, wug(x) describes the initial temperature
distribution in the metal bar while uy(t) and ug(t) describe the prescribed temperature
at its two ends.
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5.4 The 1D linear wave equation
5.4.1 The PDE and its applications

e The 1D linear wave equation
Pu  , Qu
o~ o2
is a PDE for the unknown function u(x,t). The constant ¢ is the “wave speed” whose
role we shall discuss below.

e The PDE describes travelling-wave phenomena, and governs, for instance, the transverse
displacements of an oscillating guitar string.

e The 1D linear wave equation requires two initial conditions, specifying the initial value
and the initial time-derivative of the unknown function, respectively, i.e.

ou

—| =w(z
ot |, o(@)
where the functions ug(x) and vo(z) are given.

e If solved in a finite domain, e.g. in the 1D domain D = {x } X, <z < XR}, we also
require boundary conditions at both ends of the domain, i.e.

u(lr = Xp,t) =ur(t) and u(z = Xg,t) = ug(t),
where the functions uy () and ug(t) are given.

e In the physical application referred to above, ug(x) and vo(z) describe the initial position
and the initial velocity of the guitar string, while the boundary conditions u(t) = 0 and
ug(t) = 0 indicate that the ends of the string are fixed to the rigid body of the guitar.
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5.4.2 The general solution — travelling waves

e The general solution of the 1D linear wave equation has the form
u(e,t) = flz— ct) + gl + ct)

where f and g are arbitrary functions. The two functions represent two travelling waves,
one moving to the right with speed ¢, the other one moving to the left with speed —c.

u A
u(x,t=0) = f(x)+g(x)

e

Figure 7: Solution of the 1D linear wave equation. The initial profile generates two travelling
waves.



2M1 — Q-STREAM (Matthias Heil, School of Mathematics, Univ. of Manchester) 20

5.5 Solution of PDEs by separation of variables: Standing waves

One of the most powerful methods for the solution of PDEs is the method of the “separation
of variables”. Here is a step-by-step procedure, illustrated for the 1D linear wave equation for
u(z,t)

Pu  u

o2 Ox2
in the 1D domain x € [0, 1], subject to the initial conditions

u(z,t =0) = sin(nz),

and

and the boundary conditions
u(zr=0,t) =0 and u(x=1,t)=0.

This corresponds to the case of oscillating string, initially deformed into a half-sine wave and
released from rest at time t = 0. Note that, for simplicity, we only consider the case of unit
wave-speed, ¢ = 1.

5.5.1 A step-by-step guide to the method of separation of variables

Step 1: Write the unknown function of two variables as a product of two functions of a single
variable:

u(z,t) = X(x) T(t).

This is an “ansatz” for the solution. Note that, in general, there is no a-priori guarantee
that the solution can actually be written in this form but it’s usually worth trying!

Step 2: Insert this “ansatz” into the PDE and differentiate.

X(z) T(t) = X"(x) T(t).

Note that 2T
T(t) = —
(*) dt?
and 2y
T”(l') — W

are ordinary derivatives.

Step 3: Separate the variables, i.e. move all functions that only depend on ¢ onto one side of
the equation and all functions that depend only on z onto the other one:

T(t) _ X"(x)

T X(2)
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Since the LHS now only depends on t and the RHS only on z, both must, in fact, be
constant and we arbitrarily call the (as yet unknown) constant —w? to obtain

() _ X"(x)

) Xz

= const. = —w?

[See 5.5.3 for a more detailed discussion of this step.]
Step 4: Solve the “spatial” equation for X (x)
X"(z)+w? X(2)=0 = X(z)=Asin(wz)+ B cos(wz)

for some constants A and B. [Check your first-year lecture notes on techniques for solving
constant-coefficient ODEs if this step is mysterious! In fact, you should know the solution

of this ODE.]

Step 5: Apply the boundary conditions:

~

wWr=0,0)=X0)T{t) =0 = X(0)=0 = B=0.

wr=1,0)=X1) Tt =0 = X(1)=0 = Asin(w)=0.

The latter equation can be satisfied either by setting A=0orw=0 (in which case
u(z,t) = 0 which cannot satisfy the initial conditions) or by setting

w=rm, 27, 3m,...
while leaving A undetermined.

Step 6: Solve the “temporal equation” for T'(¢):

Tt)+w? T(t)=0 = T(t)=Csin(wt)+ D cos(wt)
for some constants 6 and 5

Step 7: Combine the spatial and temporal factors and combine any superfluous undetermined
constants:

u(z,t) = Asin(wz) (6 sin(wt) + D cos(wt)) = sin(wz) (Asin(wt) + B cos(wt))
where A = AC and B = AD.
Step 8: Apply the initial conditions
u(z,t =0) =sin(nz) = Bsin(wr) =— B=1 and w=m.

ou

— =0= Awsin(wz) = A=0.
ot |,_,

Step 9: Done! The solution is
u(z,t) = cos(mt) sin(mx).

The oscillation of the string therefore represent a “standing wave” — the string oscillates
between the two extrema =+ sin(7wx) with a period of 2 time units, as shown in Fig. 8.
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u(x.t) T

u(xt=0) = uo(x)

Initial state: String is at rest

u(x.t) T

u(xt=1/2)

Maximum downward velocity

u(x,t)t

u(x,t) I

Sux=D

u(xt=3/2)

X Largest downward deflection:
String is at rest again.

u(x,t) !

u(x,t=2)

Maximum upward velocity

Back to where we started...

Figure 8: Solution of the 1D linear wave equation: A standing wave.

5.5.2 Comment 1: Relation to travelling waves

22

e The form of the solution obtained by the method of separation of variables may seem to
contradict our claim regarding the form of the general solution made earlier. However,
the two are equivalent: Using the trigonometric identity

2sinacos 3 = sin(a — ) + sin(a + )

with a = mx and § = 7t shows that

1

u(z,t) = cos(mt) sin(wx) = 5 (sin (m(x —t)) + sin (7(z + t))),

consistent with our claim that the general solution has the form u(z,t) = f(z—t)+g(z+t).

Standing waves can therefore be interpreted as the superposition of two travelling waves
of identical shape, travelling in opposite directions.

5.5.3 Comment 2: The sign of the separation constant

e In Step 3 of the separation of variables method, we had arbitrarily decided to give the

(real) constant a negative value by writing it as —w®.

2

In the lecture we motivated this
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choice by our knowledge about the physics of the problem: We expect the string to
oscillate periodically, so we wanted the ODE for T'(t) to have the form T + w*T = 0,
rather than 7' — w?T = 0. What would have happened if had chosen the “wrong” sign?

If we had continued the analysis with the “wrong” sign we would soon have found that it
is impossible to satisfy the boundary and initial conditions, forcing us to re-consider any
ad-hoc choices made up to that point. Changing the sign of the separation constant is
an easy way to “make the solution work”. In general, a certain amount of trial and error
may be required.

e However, it is important to remember that the method of separation of variables is not
guaranteed to work for all problems!



