
2M1 – Q-stream: SOLUTIONS 1 II

1. Solution of PDEs “by inspection”

(a) To verify that the function u(x, y) = x − y is a solution of the
PDE

∂u

∂x
+

∂u

∂y
= 0.

we form the required partial derivatives

∂u

∂x
= 1

and
∂u

∂y
= −1,

showing that their sum is

∂u

∂x
+

∂u

∂y
= 0,

as required.

(b) To show that u(x, t) = sin(x + t) + cos(x − t) is a solution of the
1D linear wave equation

∂2u

∂x2
=

∂2u

∂t2

we form the required partial derivatives

∂u

∂x
= cos(x + t) − sin(x − t)

(remember the chain rule!)

∂2u

∂x2
= − sin(x + t) − cos(x − t)

and
∂u

∂t
= cos(x + t) + sin(x − t)
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∂2u

∂t2
= − sin(x + t) − cos(x − t),

showing that the two second partial derivatives are identical, as
required.

(c) We determine the required derivatives of u(x, t) = eat(sin x−bx2):

∂u

∂t
= a eat(sin x − bx2)

and
∂2u

∂x2
= eat(− sin x − 2b).

Inserting them into the 1D unsteady heat equation

∂u

∂t
=

∂2u

∂x2

yields
a eat(sin x − bx2) = eat(− sin x − 2b).

This can be rewritten as

eat
[
sin x (a + 1) − bx2 + 2b

]
= 0.

Since eat 6= 0, the expression in the square brackets has to vanish
for all values of the independent variable, x. This is only possible
if the coefficients multiplying the various (linearly independent)
functions vanish. This requires a = −1 and b = 0.

2. Separation of variables for the 1D linear wave equation

We follow the procedure discussed in the lecture:

Step 1: Write the unknown function of two variables as a product of
two functions of a single variable:

u(x, t) = X(x) T (t).

Step 2: Insert this “ansatz” into the PDE and differentiate.

X(x) T̈ (t) = X ′′(x) T (t).
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Step 3: Separate the variables, i.e. move all functions that only de-
pend on t onto one side of the equation and all functions that
depend only on x onto the other one:

T̈ (t)

T (t)
=

X ′′(x)

X(x)
.

Since the LHS now only depends on t and the RHS only on x,
both must, in fact, be constant and we arbitrarily call the (as yet
unknown) constant −ω2 to obtain

T̈ (t)

T (t)
=

X ′′(x)

X(x)
= const. = −ω2

Step 4: Solve the “spatial” equation for X(x)

X ′′(x) + ω2 X(x) = 0 =⇒ X(x) = Â sin(ωx) + B̂ cos(ωx)

for some constants Â and B̂.

Step 5: Apply the boundary conditions:

u(x = 0, t) = X(0) T (t) = 0 =⇒ X(0) = 0 =⇒ B̂ = 0.

u(x = 1, t) = X(1) T (t) = 0 =⇒ X(1) = 0 =⇒ Â sin(ω) = 0.

The latter equation can be satisfied either by setting Â = 0 or
ω = 0 (in which case u(x, t) ≡ 0 which cannot satisfy the initial
conditions) or by setting

ω = π, 2π, 3π, ...

while leaving Â undetermined.

Step 6: Solve the “temporal equation” for T (t):

T̈ (t) + ω2 T (t) = 0 =⇒ T (t) = Ĉ sin(ωt) + D̂ cos(ωt)

for some constants Ĉ and D̂.

Step 7: Combine the spatial and temporal factors and combine any
superfluous undetermined constants:

u(x, t) = Â sin(ωx)
(
Ĉ sin(ωt)+D̂ cos(ωt)

)
= sin(ωx)

(
A sin(ωt)+B cos(ωt)

)

where A = ÂĈ and B = ÂD̂.
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Step 8: Apply the initial conditions

∂u

∂t

∣∣∣∣
t=0

= sin(3πx) = Aω sin(ωx) =⇒ ω = 3π and Aω = 1, i.e. A = 1/(3π).

u(x, t = 0) = 0 = B sin(ωx) =⇒ B = 0.

Step 9: Done! The solution is

u(x, t) =
1

3π
sin(3πt) sin(3πx).

3. Separation of variables for the 1D unsteady heat equation

Recall that this problem may be interpreted as describing the spatial
and temporal evolution of the temperature in a thin, well-insulated
metal bar whose ends are held at zero tempature. Physically we expect
the initial tempature distribution, u0(x) = sin(x), to decay towards a
state in which the temparature is zero everywhere.

The separation of variables method follow the same steps as in the
linear wave example – the main difference being that we only have a
first temporal derivative.

Step 1: Write the unknown function of two variables as a product of
two functions of a single variable:

u(x, t) = X(x) T (t).

Step 2: Insert this “ansatz” into the PDE and differentiate.

X(x) Ṫ (t) = X ′′(x) T (t).

Step 3: Separate the variables, i.e. move all functions that only de-
pend on t onto one side of the equation and all functions that
depend only on x onto the other one:

Ṫ (t)

T (t)
=

X ′′(x)

X(x)
.

Since the LHS now only depends on t and the RHS only on x,
both must, in fact, be constant and we arbitrarily call the (as yet
unknown) constant −ω2 to obtain

Ṫ (t)

T (t)
=

X ′′(x)

X(x)
= const. = −ω2
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Step 4: Solve the “spatial” equation for X(x)

X ′′(x) + ω2 X(x) = 0 =⇒ X(x) = Â sin(ωx) + B̂ cos(ωx)

for some constants Â and B̂.

Step 5: Apply the boundary conditions:

u(x = 0, t) = X(0) T (t) = 0 =⇒ X(0) = 0 =⇒ B̂ = 0.

u(x = π, t) = X(π) T (t) = 0 =⇒ X(π) = 0 =⇒ Â sin(ωπ) = 0.

The latter equation can be satisfied either by setting Â = 0 or
ω = 0 (in which case u(x, t) ≡ 0 which cannot satisfy the initial
conditions) or by setting

ω = 1, 2, 3, ...

while leaving Â undetermined.

Step 6: Solve the “temporal equation” for T (t):

Ṫ (t) + ω2 T (t) = 0 =⇒ T (t) = Ĉ exp(−ω2t).

for some constant Ĉ. Note that if we had chosen another sign for
the separation constant, the tempature in the metal bar would
increase exponentially – not what we would expect!

Step 7: Combine the spatial and temporal factors and combine any
superfluous undetermined constants:

u(x, t) = Â sin(ωx) Ĉ exp(−ω2t) = A sin(ωx) exp(−ω2t)

where A = ÂĈ.

Step 8: Apply the initial conditions

u(x, t = 0) = sin(x) = A sin(ωx) =⇒ A = 1 and ω = 1

Step 9: Done! The solution is

u(x, t) = exp(−t) sin(x).

Compare to the result of question 1c.
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