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5 Partial differential equations (PDEs)

• Partial differential equations (PDEs) are functions that relate the value of an unknown
function of multiple variables to its derivatives. In this course we will discuss four PDEs
that arise in many science and engineering applications.

• For each PDE we will briefly discuss some of its physical background, the required bound-
ary/initial conditions, and general properties of its solutions.

• Remember that, as in the case of ODEs, it is easy to check if a function is a solution of
a given boundary/initial value problem. Simply check:

1. Does the function satisfy the PDE?

2. Does the function satisfy the boundary/initial conditions?

If the answer to both tests is positive, the function is a solution.

• Example:

Consider the boundary value problem comprising the PDE

∂2u

∂x2
+

∂2u

∂y2
= 4

in the unit disk D =
{

(x, y)
∣

∣ x2 + y2 ≤ 1
}

, subject to the boundary condition

u
∣

∣

∂D
= 1,

where the domain boundary ∂D is given by ∂D =
{

(x, y)
∣

∣ x2 + y2 = 1
}

.

It is easy to verify that u(x, y) = x2 + y2 is a solution of the boundary value problem:

1. Does the function satisfy the PDE?

– Yes, because
∂2u

∂x2
= 2 and

∂2u

∂y2
= 2,

so
∂2u

∂x2
+

∂2u

∂y2
= 4,

as required.

2. Does the function satisfy the boundary condition?

– Yes, because
u
∣

∣

∂D
=

(

x2 + y2
)
∣

∣

x2+y2=1
= 1,

as required.
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5.1 The 1D advection equation

5.1.1 The PDE and its applications

• The 1D advection equation
∂u

∂t
+ w(x, t)

∂u

∂x
= 0

is a PDE for the unknown function u(x, t). The equation arises in many transport pro-
cesses where u(x, t) represents, e.g. the concentration of a chemical that is advected by a
one-dimensional flow field whose local velocity is given by the “wind” w(x, t).

• The 1D advection equation requires an initial condition of the form

u(x, t = 0) = u0(x),

where u0(x) is given.

• If the transport occurs in a finite domain, e.g. x ∈ [XL, XR], and if w(x, t) > 0, a
boundary condition of the form

u(x = XL, t) = uL(t),

where uL(t) is given, must be specified. In the physical example referred to above this
boundary condition specifies the concentration at the “inflow boundary”.

5.1.2 Solution in an infinite domain for constant “wind”

• If the “wind” w is constant, the solution of the 1D advection equation has the form

u(x, t) = u0(x − wt)

where u0 is the function that specifies the initial condition. This shows that the initial
profile is simply “swept along” by the “wind” without changing its profile.

u(x,t=1) u(x,t=2)

x

u(x,t)

w

u(x,t=0) = u (x)
0

Figure 6: Solution of the 1D advection equation with constant wind. The initial profile u(x, t =
0) = u0(x) is “swept along” by the “wind” w.



2M1 – Q-stream (Matthias Heil, School of Mathematics, Univ. of Manchester) 17

5.2 The Laplace equation

• The Laplace equation
∂2u

∂x2
+

∂2u

∂y2
= 0

is a PDE for the unknown function u(x, y), defined in a two-dimensional domain D.

• The PDE describes steady diffusion processes, and governs, for instance, the distribution
of temperature in a block of material whose surface temperature is controlled.

• The 2D Laplace equation requires a boundary condition on all domain boundaries, i.e.
the solution u(x, y) must satisfy

u
∣

∣

∂D
= u0,

where the function u0 is given. In the physical application referred to above, u0 is the
prescribed temperature distribution on the surface of the body.

5.3 The 1D unsteady heat equation

• The 1D unsteady heat equation
∂u

∂t
=

∂2u

∂x2

is a PDE for the unknown function u(x, t).

• The PDE describes unsteady diffusion processes, and governs, for instance, the spatial
and temporal evolution of the temperature in a thin, well-insulated metal bar.

• The 1D unsteady heat equation requires an initial condition of the form

u(x, t = 0) = u0(x)

where the function u0(x) is given.

• If solved in a finite domain, e.g. in the 1D domain D =
{

x
∣

∣ XL ≤ x ≤ XR

}

, we also
require boundary conditions at both ends of the domain, i.e.

u(x = XL, t) = uL(t) and u(x = XR, t) = uR(t),

where the functions uL(t) and uR(t) are given.

• In the physical application referred to above, u0(x) describes the initial temperature
distribution in the metal bar while uL(t) and uR(t) describe the prescribed temperature
at its two ends.
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5.4 The 1D linear wave equation

5.4.1 The PDE and its applications

• The 1D linear wave equation
∂2u

∂t2
= c2

∂2u

∂x2

is a PDE for the unknown function u(x, t). The constant c is the “wave speed” whose
role we shall discuss below.

• The PDE describes travelling-wave phenomena, and governs, for instance, the transverse
displacements of an oscillating guitar string.

• The 1D linear wave equation requires two initial conditions, specifying the initial value
and the initial time-derivative of the unknown function, respectively, i.e.

u(x, t = 0) = u0(x) and
∂u

∂t

∣

∣

∣

∣

t=0

= v0(x)

where the functions u0(x) and v0(x) are given.

• If solved in a finite domain, e.g. in the 1D domain D =
{

x
∣

∣ XL ≤ x ≤ XR

}

, we also
require boundary conditions at both ends of the domain, i.e.

u(x = XL, t) = uL(t) and u(x = XR, t) = uR(t),

where the functions uL(t) and uR(t) are given.

• In the physical application referred to above, u0(x) and v0(x) describe the initial position
and the initial velocity of the guitar string, while the boundary conditions uL(t) = 0 and
uR(t) = 0 indicate that the ends of the string are fixed to the rigid body of the guitar.
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5.4.2 The general solution – travelling waves

• The general solution of the 1D linear wave equation has the form

u(x, t) = f(x − ct) + g(x + ct)

where f and g are arbitrary functions. The two functions represent two travelling waves,
one moving to the right with speed c, the other one moving to the left with speed −c.

x

u(x,t=0) = f(x)+g(x)
u

x

u u(x,t) =

f(x−ct)+g(x+ct)

c c

Figure 7: Solution of the 1D linear wave equation. The initial profile generates two travelling
waves.


