2M1 — Q-sTREAM: SOLUTIONS ! 1

1. Partial derivatives
(a) f(z,y) =a® —2zy+6x —2y +1:
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(b) f(x,y) = exp(zy):
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% =y’ exp(ay)
aasjafy - 38;(;; = exp(zy) + yz exp(zy) = (1 + yz) exp(ay)
() flz,y) =2 +y*+ 2%y +4:
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2. Stationary points

The position of stationary points is determined by the two conditions
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Their character is determined by the second derivatives; in particular
the discriminant

=0.

(w0,y0)

(%0,y0)

D = AB — C?,
where
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(a) f(z,y) =2® —2zy+ 62 — 2y +1:

Using the results from the previous question:
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So
D=AB—(C?= -4 < 0= Saddle point.
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Figure 1: Plot of the function and its single stationary point.

(b) f(x,y) = exp(zy):

Using the results from the previous question:

8f/8x{ = 1o exp(ToYo)
(wo.30) = (20, %0) = (0,0).
8f/8y|(z07y0) = xo exp(zoyo) (w0,%0) = (0,0)
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So
D=AB—-C?=—-1<0=Saddle point.
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Figure 2: Plot of the function and its single stationary point.

(c) f(z,y) =2 +y? + 2y + 4:
Using the results from the previous question:

6f/ax|(«’co,yo) = 20 + 2Toyo =0
8f/8y|( =2yp+ 23 =0

Z0,0)

The second of these equations can be solved for yg = —3z. In-
serting this into the first equation yields

279 — = 1o(2 — 25) = 0.

This equation has three solutions, corresponding to the three sta-
tionary points:
Pli 370:0,3/0:0,

P2: x():\/ia 90:—1;
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and

P32

Ty = —\/57 yo = —1.

As in the lecture, we analyse the character of the three critical
point in a table:

Point A=242y | B=2|C =21y | D=AB —C?| Classification
P, =(0,0) 2 2 0 4 Local minimum
P, = (v2,-1) 0 2 2v/2 -8 Saddle

P; = (-2, —1) 0 2 —2V/2 -8 Saddle

Saddles

| —

Minimum

Figure 3: Plot of the function and its three stationary points.




3. Taylor series

Recall that the Taylor series of a function of a function of two variables,
f(z,y), about a point (z¢,yo) is given by

f(xo+e6yo+9) = flwo,90) +
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for “small” values of € and 9.

We have already computed the required partial derivatives in question
1b. Evaluating them at (xg, yo) yields the required result.



