Lecture Notes for 2M1 - Q-Stream

Dr Matthias Heil
School of Mathematics
University of Manchester
M.Heil@maths.man.ac.uk
\section*{Course webpage:}
http://www.maths.man.ac.uk/~mheil/Lectures/2M1

Note:

- This part of the course, dealing with functions of two variables and partial differential equations (PDEs), is taught during weeks 1-5.
- The course web page provides online access to the lecture notes, example sheets and other handouts and announcements.
- Most of the material will be taught in "chalk and talk" mode. If OHP transparencies are used, copies will be made available (after the lecture) on this page.
- Please consult the service course page
http://www.maths.man.ac.uk/service
for details on how to get hold of material for the other parts of the course.
- Please note that the lecture notes only summarise the main results and will generally be handed out after the material has been covered in the lecture. You are expected take notes during the classes.

1 Reminder: Functions of a single variable

A function $y=y(x)$ is a function of a single variable.

Examples

Figure 1: Functions of a single variable: $y(x)=x^{2}$ and $y(x)=\sin x$.

1.1 [Ordinary] derivatives

First derivative:

$$
y^{\prime}=\frac{d y}{d x}
$$

- The first derivative represents the slope of the curve $y=y(x)$.
- In general, y^{\prime} is a function of x too.

Second derivative:

$$
y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d x}\right)
$$

- The second derivative is the derivative of the first derivative.
- The second derivative indicates the curvature of the curve $y=y(x)$.

Higher derivatives:

$$
y^{(n)}=\frac{d^{n} y}{d x^{n}}=\frac{d}{d x}\left(\frac{d}{d x}\left(\frac{d}{d x}\left(\ldots\left(\frac{d y}{d x}\right) \ldots\right)\right)\right)
$$

- Higher derivatives are defined recursively: The n-th derivative is the derivative of the $n-1$-th derivative.

1.2 Stationary points: Maxima and minima

Condition for a stationary point: .

- The function $y(x)$ has a "stationary point" at x_{0} if

$$
\left.\frac{d y}{d x}\right|_{x_{0}}=0,
$$

where the $\left.(\ldots)\right|_{x_{0}}$ notation indicates that the expression in the round brackets is to be evaluated at $x=x_{0}$.

Classification of stationary points:

- The nature of a stationary point is determined by the function's second derivative:

$$
\left.\frac{d^{2} y}{d x^{2}}\right|_{x_{0}}\left\{\begin{array}{lll}
>0 & \Longrightarrow & \text { Local minimum } \\
<0 & \Longrightarrow & \text { Local maximum } \\
=0 & \Longrightarrow & \text { Test is not conclusive (curve too flat; e.g. at an inflection point.) }
\end{array}\right.
$$

Figure 2: Generic stationary points for a function of one variable.

1.3 Taylor series:

- The Taylor series of a function $y(x)$ about a point $x=x_{0}$ provides an approximation of the function in the neighbourhood of x_{0} :

$$
y\left(x_{0}+\epsilon\right)=y\left(x_{0}\right)+\left.\frac{d y}{d x}\right|_{x_{0}} \epsilon+\left.\frac{1}{2!} \frac{d^{2} y}{d x^{2}}\right|_{x_{0}} \epsilon^{2}+\left.\frac{1}{3!} \frac{d^{3} y}{d x^{3}}\right|_{x_{0}} \epsilon^{3}+\ldots
$$

for "small" $|\epsilon|$.
Here $n!=1 \times 2 \times 3 \times \ldots \times(n-1) \times n$ is the factorial.
The Taylor expansion may also be written as

$$
y(x)=y\left(x_{0}\right)+\left.\frac{d y}{d x}\right|_{x_{0}}\left(x-x_{0}\right)+\left.\frac{1}{2!} \frac{d^{2} y}{d x^{2}}\right|_{x_{0}}\left(x-x_{0}\right)^{2}+\left.\frac{1}{3!} \frac{d^{3} y}{d x^{3}}\right|_{x_{0}}\left(x-x_{0}\right)^{3}+\ldots
$$

for "small" values of $\left|x-x_{0}\right|$.

