2M1 - Q-STREAM: SOLUTIONS ${ }^{1}$ II

1. Solution of PDEs "by inspection"
(a) To verify that the function $u(x, y)=x-y$ is a solution of the PDE

$$
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0 .
$$

we form the required partial derivatives

$$
\frac{\partial u}{\partial x}=1
$$

and

$$
\frac{\partial u}{\partial y}=-1,
$$

showing that their sum is

$$
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0
$$

as required.
(b) To show that $u(x, t)=\sin (x+t)+\cos (x-t)$ is a solution of the 1D linear wave equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}
$$

we form the required partial derivatives

$$
\frac{\partial u}{\partial x}=\cos (x+t)-\sin (x-t)
$$

(remember the chain rule!)

$$
\frac{\partial^{2} u}{\partial x^{2}}=-\sin (x+t)-\cos (x-t)
$$

and

$$
\frac{\partial u}{\partial t}=\cos (x+t)+\sin (x-t)
$$

[^0]$$
\frac{\partial^{2} u}{\partial t^{2}}=-\sin (x+t)-\cos (x-t)
$$
showing that the two second partial derivatives are identical, as required.
(c) We determine the required derivatives of $u(x, t)=e^{a t}\left(\sin x-b x^{2}\right)$:
$$
\frac{\partial u}{\partial t}=a e^{a t}\left(\sin x-b x^{2}\right)
$$
and
$$
\frac{\partial^{2} u}{\partial x^{2}}=e^{a t}(-\sin x-2 b)
$$

Inserting them into the 1D unsteady heat equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

yields

$$
a e^{a t}\left(\sin x-b x^{2}\right)=e^{a t}(-\sin x-2 b) .
$$

This can be rewritten as

$$
e^{a t}\left[\sin x(a+1)-b x^{2}+2 b\right]=0
$$

Since $e^{a t} \neq 0$, the expression in the square brackets has to vanish for all values of the independent variable, x. This is only possible if the coefficients multiplying the various (linearly independent) functions vanish. This requires $a=-1$ and $b=0$.

2. Separation of variables for the 1D linear wave equation

We follow the procedure discussed in the lecture:
Step 1: Write the unknown function of two variables as a product of two functions of a single variable:

$$
u(x, t)=X(x) T(t)
$$

Step 2: Insert this "ansatz" into the PDE and differentiate.

$$
X(x) \ddot{T}(t)=X^{\prime \prime}(x) T(t)
$$

Step 3: Separate the variables, i.e. move all functions that only depend on t onto one side of the equation and all functions that depend only on x onto the other one:

$$
\frac{\ddot{T}(t)}{T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}
$$

Since the LHS now only depends on t and the RHS only on x, both must, in fact, be constant and we arbitrarily call the (as yet unknown) constant $-\omega^{2}$ to obtain

$$
\frac{\ddot{T}(t)}{T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}=\text { const. }=-\omega^{2}
$$

Step 4: Solve the "spatial" equation for $X(x)$

$$
X^{\prime \prime}(x)+\omega^{2} X(x)=0 \quad \Longrightarrow \quad X(x)=\widehat{A} \sin (\omega x)+\widehat{B} \cos (\omega x)
$$

for some constants \widehat{A} and \widehat{B}.
Step 5: Apply the boundary conditions:

$$
\begin{gathered}
u(x=0, t)=X(0) T(t)=0 \quad \Longrightarrow \quad X(0)=0 \quad \Longrightarrow \quad \widehat{B}=0 . \\
u(x=1, t)=X(1) T(t)=0 \quad \Longrightarrow \quad X(1)=0 \quad \Longrightarrow \quad \widehat{A} \sin (\omega)=0 .
\end{gathered}
$$

The latter equation can be satisfied either by setting $\widehat{A}=0$ or $\omega=0$ (in which case $u(x, t) \equiv 0$ which cannot satisfy the initial conditions) or by setting

$$
\omega=\pi, 2 \pi, 3 \pi, \ldots
$$

while leaving \widehat{A} undetermined.
Step 6: Solve the "temporal equation" for $T(t)$:

$$
\ddot{T}(t)+\omega^{2} T(t)=0 \quad \Longrightarrow \quad T(t)=\widehat{C} \sin (\omega t)+\widehat{D} \cos (\omega t)
$$

for some constants \widehat{C} and \widehat{D}.
Step 7: Combine the spatial and temporal factors and combine any superfluous undetermined constants:
$u(x, t)=\widehat{A} \sin (\omega x)(\widehat{C} \sin (\omega t)+\widehat{D} \cos (\omega t))=\sin (\omega x)(A \sin (\omega t)+B \cos (\omega t))$ where $A=\widehat{A} \widehat{C}$ and $B=\widehat{A} \widehat{D}$.

Step 8: Apply the initial conditions

$$
\begin{gathered}
\left.\frac{\partial u}{\partial t}\right|_{t=0}=\sin (3 \pi x)=A \omega \sin (\omega x) \Longrightarrow \omega=3 \pi \text { and } A \omega=1, \text { i.e. } A=1 /(3 \pi) . \\
u(x, t=0)=0=B \sin (\omega x) \quad \Longrightarrow \quad B=0 .
\end{gathered}
$$

Step 9: Done! The solution is

$$
u(x, t)=\frac{1}{3 \pi} \sin (3 \pi t) \sin (3 \pi x) .
$$

3. Separation of variables for the 1 D unsteady heat equation

Recall that this problem may be interpreted as describing the spatial and temporal evolution of the temperature in a thin, well-insulated metal bar whose ends are held at zero tempature. Physically we expect the initial tempature distribution, $u_{0}(x)=\sin (x)$, to decay towards a state in which the temparature is zero everywhere.
The separation of variables method follow the same steps as in the linear wave example - the main difference being that we only have a first temporal derivative.

Step 1: Write the unknown function of two variables as a product of two functions of a single variable:

$$
u(x, t)=X(x) T(t)
$$

Step 2: Insert this "ansatz" into the PDE and differentiate.

$$
X(x) \dot{T}(t)=X^{\prime \prime}(x) T(t)
$$

Step 3: Separate the variables, i.e. move all functions that only depend on t onto one side of the equation and all functions that depend only on x onto the other one:

$$
\frac{\dot{T}(t)}{T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}
$$

Since the LHS now only depends on t and the RHS only on x, both must, in fact, be constant and we arbitrarily call the (as yet unknown) constant $-\omega^{2}$ to obtain

$$
\frac{\dot{T}(t)}{T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}=\text { const. }=-\omega^{2}
$$

Step 4: Solve the "spatial" equation for $X(x)$

$$
X^{\prime \prime}(x)+\omega^{2} X(x)=0 \quad \Longrightarrow \quad X(x)=\widehat{A} \sin (\omega x)+\widehat{B} \cos (\omega x)
$$

for some constants \widehat{A} and \widehat{B}.
Step 5: Apply the boundary conditions:

$$
\begin{gathered}
u(x=0, t)=X(0) T(t)=0 \quad \Longrightarrow \quad X(0)=0 \quad \Longrightarrow \quad \widehat{B}=0 . \\
u(x=\pi, t)=X(\pi) T(t)=0 \quad \Longrightarrow \quad X(\pi)=0 \quad \Longrightarrow \quad \widehat{A} \sin (\omega \pi)=0 .
\end{gathered}
$$

The latter equation can be satisfied either by setting $\widehat{A}=0$ or $\omega=0$ (in which case $u(x, t) \equiv 0$ which cannot satisfy the initial conditions) or by setting

$$
\omega=1,2,3, \ldots
$$

while leaving \widehat{A} undetermined.
Step 6: Solve the "temporal equation" for $T(t)$:

$$
\dot{T}(t)+\omega^{2} T(t)=0 \quad \Longrightarrow \quad T(t)=\widehat{C} \exp \left(-\omega^{2} t\right)
$$

for some constant \widehat{C}. Note that if we had chosen another sign for the separation constant, the tempature in the metal bar would increase exponentially - not what we would expect!
Step 7: Combine the spatial and temporal factors and combine any superfluous undetermined constants:

$$
u(x, t)=\widehat{A} \sin (\omega x) \widehat{C} \exp \left(-\omega^{2} t\right)=A \sin (\omega x) \exp \left(-\omega^{2} t\right)
$$

where $A=\widehat{A} \widehat{C}$.
Step 8: Apply the initial conditions

$$
u(x, t=0)=\sin (x)=A \sin (\omega x) \quad \Longrightarrow \quad A=1 \quad \text { and } \quad \omega=1
$$

Step 9: Done! The solution is

$$
u(x, t)=\exp (-t) \sin (x) .
$$

Compare to the result of question 1 c .

[^0]: ${ }^{1}$ Any feedback to: M.Heil@maths.man.ac.uk

