2M1 - Q-Stream: SOLUTIONS ${ }^{1}$ I

1. Partial derivatives

(a) $f(x, y)=x^{2}-2 x y+6 x-2 y+1$:

$$
\begin{gathered}
\frac{\partial f}{\partial x}=2 x-2 y+6 \\
\frac{\partial f}{\partial y}=-2 x-2 \\
\frac{\partial^{2} f}{\partial x^{2}}=2 \\
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}=-2 \\
\frac{\partial^{2} f}{\partial y^{2}}=0
\end{gathered}
$$

(b) $f(x, y)=\exp (x y)$:

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =y \exp (x y) \\
\frac{\partial f}{\partial y} & =x \exp (x y) \\
\frac{\partial^{2} f}{\partial x^{2}} & =y^{2} \exp (x y) \\
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}=\exp (x y) & +y x \exp (x y)=(1+y x) \exp (x y) \\
\frac{\partial^{2} f}{\partial y^{2}} & =x^{2} \exp (x y)
\end{aligned}
$$

(c) $f(x, y)=x^{2}+y^{2}+x^{2} y+4$:

$$
\frac{\partial f}{\partial x}=2 x+2 x y
$$

[^0]\[

$$
\begin{gathered}
\frac{\partial f}{\partial y}=2 y+x^{2} \\
\frac{\partial^{2} f}{\partial x^{2}}=2+2 y \\
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}=2 x \\
\frac{\partial^{2} f}{\partial y^{2}}=2
\end{gathered}
$$
\]

2. Stationary points

The position of stationary points is determined by the two conditions

$$
\left.\frac{\partial f}{\partial x}\right|_{\left(x_{0}, y_{0}\right)}=0 \quad \text { and }\left.\quad \frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)}=0
$$

Their character is determined by the second derivatives; in particular the discriminant

$$
D=A B-C^{2}
$$

where

$$
A=\left.\frac{\partial^{2} f}{\partial x^{2}}\right|_{\left(x_{0}, y_{0}\right)}, \quad B=\left.\frac{\partial^{2} f}{\partial y^{2}}\right|_{\left(x_{0}, y_{0}\right)} \quad \text { and } \quad C=\left.\frac{\partial^{2} f}{\partial x \partial y}\right|_{\left(x_{0}, y_{0}\right)}
$$

(a) $f(x, y)=x^{2}-2 x y+6 x-2 y+1$:

Using the results from the previous question:

$$
\begin{gathered}
\left.\begin{array}{c}
\partial f /\left.\partial x\right|_{\left(x_{0}, y_{0}\right)}=2 x_{0}-2 y_{0}+6=0 \\
\partial f /\left.\partial y\right|_{\left(x_{0}, y_{0}\right)}=-2 x_{0}-2=0
\end{array}\right\} \Longrightarrow\left(x_{0}, y_{0}\right)=(-1,2) . \\
A=\left.\frac{\partial^{2} f}{\partial x^{2}}\right|_{\left(x_{0}, y_{0}\right)}=2 \\
B=\left.\frac{\partial^{2} f}{\partial y^{2}}\right|_{\left(x_{0}, y_{0}\right)}=0 \\
C=\left.\frac{\partial^{2} f}{\partial x \partial y}\right|_{\left(x_{0}, y_{0}\right)}=-2
\end{gathered}
$$

So

$$
D=A B-C^{2}=-4<0 \Longrightarrow \quad \text { Saddle point. }
$$

Figure 1: Plot of the function and its single stationary point.
(b) $f(x, y)=\exp (x y)$:

Using the results from the previous question:

$$
\begin{gathered}
\begin{array}{c}
\partial f /\left.\partial x\right|_{\left(x_{0}, y_{0}\right)}= \\
\partial f /\left.\partial y\right|_{\left(x_{0}, y_{0}\right)}= \\
x_{0} \exp \left(x_{0} y_{0}\right) \\
\\
A=\left.\frac{\partial^{2} f}{\partial x^{2}}\right|_{\left(x_{0}, y_{0}\right)}=0 \\
B=\left.\frac{\partial^{2} f}{\partial y^{2}}\right|_{\left(x_{0}, y_{0}\right)}=0 \\
C=\left.\frac{\partial^{2} f}{\partial x \partial y}\right|_{\left(x_{0}, y_{0}\right)}=1
\end{array} . \Longrightarrow\left(x_{0}, y_{0}\right)=(0,0) .
\end{gathered}
$$

So

$$
D=A B-C^{2}=-1<0 \Longrightarrow \quad \text { Saddle point. }
$$

Figure 2: Plot of the function and its single stationary point.
(c) $f(x, y)=x^{2}+y^{2}+x^{2} y+4$:

Using the results from the previous question:

$$
\begin{aligned}
\partial f /\left.\partial x\right|_{\left(x_{0}, y_{0}\right)} & =2 x_{0}+2 x_{0} y_{0}=0 \\
\partial f /\left.\partial y\right|_{\left(x_{0}, y_{0}\right)} & =2 y_{0}+x_{0}^{2}=0
\end{aligned}
$$

The second of these equations can be solved for $y_{0}=-\frac{1}{2} x_{0}^{2}$. Inserting this into the first equation yields

$$
2 x_{0}-x_{0}^{3}=x_{0}\left(2-x_{0}^{2}\right)=0 .
$$

This equation has three solutions, corresponding to the three stationary points:

$$
\begin{gathered}
\mathbf{P}_{1}: \quad x_{0}=0, y_{0}=0, \\
\mathbf{P}_{2}: \quad x_{0}=\sqrt{2}, y_{0}=-1,
\end{gathered}
$$

and

$$
\mathbf{P}_{3}: \quad x_{0}=-\sqrt{2}, y_{0}=-1 .
$$

As in the lecture, we analyse the character of the three critical point in a table:

Point	$A=2+2 y_{0}$	$B=2$	$C=2 x_{0}$	$D=A B-C^{2}$	Classification
$\mathbf{P}_{1}=(0,0)$	2	2	0	4	Local minimum
$\mathbf{P}_{2}=(\sqrt{2},-1)$	0	2	$2 \sqrt{2}$	-8	Saddle
$\mathbf{P}_{3}=(-\sqrt{2},-1)$	0	2	$-2 \sqrt{2}$	-8	Saddle

Figure 3: Plot of the function and its three stationary points.

3. Taylor series

Recall that the Taylor series of a function of a function of two variables, $f(x, y)$, about a point $\left(x_{0}, y_{0}\right)$ is given by

$$
\begin{aligned}
f\left(x_{0}+\epsilon, y_{0}+\delta\right) & =f\left(x_{0}, y_{0}\right)+ \\
& +\left.\frac{\partial f}{\partial x}\right|_{\left(x_{0}, y_{0}\right)} \epsilon+\left.\frac{\partial f}{\partial y}\right|_{\left(x_{0}, y_{0}\right)} \delta+ \\
& +\frac{1}{2!}\left[\left.\frac{\partial^{2} f}{\partial x^{2}}\right|_{\left(x_{0}, y_{0}\right)} \epsilon^{2}+\left.2 \frac{\partial^{2} f}{\partial x \partial y}\right|_{\left(x_{0}, y_{0}\right)} \epsilon \delta+\left.\frac{\partial^{2} f}{\partial y^{2}}\right|_{\left(x_{0}, y_{0}\right)}\right] \\
& +\cdots
\end{aligned}
$$

for "small" values of ϵ and δ.
We have already computed the required partial derivatives in question
1 b . Evaluating them at $\left(x_{0}, y_{0}\right)$ yields the required result.

[^0]: ${ }^{1}$ Any feedback to: M.Heil@maths.man.ac.uk

