2M1 - Q-stream: EXAMPLE SHEET ${ }^{1}$ II

1. Solution of PDEs "by inspection"
(a) Show that the function $u(x, y)=x-y$ is a solution of the PDE

$$
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}=0
$$

(b) Show that $u(x, t)=\sin (x+t)+\sin (x-t)$ is a solution of the 1D linear wave equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}
$$

(c) Determine the values of the constants a and b for which the function $u(x, t)=e^{a t}\left(\sin x-b x^{2}\right)$ satisfies the 1D unsteady heat equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

2. Separation of variables for the 1D linear wave equation

Use separation of variables to solve the 1D linear wave equation

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}
$$

subject to the boundary conditions

$$
u(x=0, t)=0 \quad \text { and } \quad u(x=1, t)=0
$$

and the initial conditions

$$
u(x, t=0)=0 \quad \text { and }\left.\quad \frac{\partial u}{\partial t}\right|_{t=0}=\sin (3 \pi x)
$$

[^0]3. Separation of variables for the 1D unsteady heat equation

Use separation of variables to solve the 1D unsteady heat equation

$$
\frac{\partial u}{\partial t}=\frac{\partial^{2} u}{\partial x^{2}}
$$

subject to the boundary conditions

$$
u(x=0, t)=0 \quad \text { and } \quad u(x=\pi, t)=0
$$

and the initial condition

$$
u(x, t=0)=\sin (x) .
$$

Hint:

Choose the sign of the separation constant so that the ODE for $T(t)$ becomes $d T / d t+\omega^{2} T=0$, say, where $\omega^{2}>0$. This choice is motivated by the physics of the problem. Explain why!

[^0]: ${ }^{1}$ Any feedback to: M.Heil@maths.man.ac.uk

