2M1 - Q-stream: EXAMPLE SHEET ${ }^{1}$ I

1. Partial derivatives

Find the partial derivatives $\partial f / \partial x, \partial f / \partial y, \partial^{2} f / \partial x^{2}, \partial^{2} f / \partial y^{2}$ and $\partial^{2} f /(\partial x \partial y)$ for the following functions:
(a) $f(x, y)=x^{2}-2 x y+6 x-2 y+1$
(b) $f(x, y)=\exp (x y)$
(c) $f(x, y)=x^{2}+y^{2}+x^{2} y+4$

In each case confirm that

$$
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)
$$

Hint: Don't forget the chain and product rules:

$$
\frac{d}{d x} f(g(x))=f^{\prime}(g(x)) g^{\prime}(x)
$$

and

$$
\frac{d}{d x}(f(x) g(x))=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)
$$

2. Stationary points

Determine the stationary points of the three functions in the previous question and classify them.

3. Taylor series

Show that the Taylor series expansion of $f(x, y)=e^{x y}$ about the point $(2,3)$ is

$$
f(2+\epsilon, 3+\delta)=e^{6}\left[1+3 \epsilon+2 \delta+\frac{1}{2}\left(9 \epsilon^{2}+14 \epsilon \delta+4 \delta^{2}\right)\right]+\cdots,
$$

or, if you prefer the alternative notation:

$$
\begin{aligned}
f(x, y) & =e^{6}[1+3(x-2)+2(y-3)+ \\
& \left.+\frac{1}{2}\left(9(x-2)^{2}+14(x-2)(y-3)+4(y-3)^{2}\right)\right]+\cdots
\end{aligned}
$$

[^0]
[^0]: ${ }^{1}$ Any feedback to: M.Heil@maths.man.ac.uk

