
2M1 – Q-stream (Matthias Heil, School of Mathematics, Univ. of Manchester) 5

2 Functions of multiple [two] variables

In many applications in science and engineering, a function of interest depends on multiple
variables. For instance, the ideal gas law p = ρRT states that the pressure p is a function
of both its density, ρ and its temperature, T . (The gas constant R is a material property
and not a variable).

We will now show how to extend the analysis of functions of a single variable to
functions of multiple variables. We will restrict ourselves to the case of two variables, i.e.
functions of the form

z = z(x, y),

the extension to larger numbers of variables being relatively straightforward, apart from
the fact that functions of three and more variables are somewhat harder to visualise...

2.1 Examples

Here are some plots of functions of two variables:
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Figure 3: Functions of two variables: z(x, y) = xy and z(x) = cos x sin y.
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2.2 Partial derivatives

Functions of multiple variables can be differentiated with respect to either of their vari-
ables, the other variable being understood to be held constant during the differentiation.
Such derivatives are known as partial derivatives and are distinguished from ordinary

derivatives by using a ∂ instead of a d.

First derivatives: .

• For a function of two variables there are two partial derivatives

∂z

∂x
= zx

and
∂z

∂y
= zy.

• In general, the first derivatives are functions of x and y too.

Second derivatives: .

• For a function of two variables there are three second partial derivatives, defined
as

∂2z

∂x2
=

∂

∂x

(
∂z

∂x

)

= zxx

∂2z

∂y2
=

∂

∂y

(
∂z

∂y

)

= zyy

and the mixed derivative

∂2z

∂x∂y
=

∂

∂x

(
∂z

∂y

)

= zxy

where we usually1 have
∂2z

∂x∂y
=

∂2z

∂y∂x

i.e.
∂

∂x

(
∂z

∂y

)

=
∂

∂y

(
∂z

∂x

)

Higher derivatives: .

• Higher derivatives are again defined recursively, e.g.

∂5z

∂x3∂y2
=

∂3

∂x3

(
∂2z

∂y2

)

etc.

1Mathematicians obviously love to construct esoteric functions for which this property doesn’t hold
but it’s rare to come across these in “real life”. Strictly speaking, you can only exchange the order of the
differentiation if the function z(x, y) is sufficiently smooth. Most functions are.
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2.3 Stationary points: Maxima and minima and saddles

Types of stationary points: .

• Functions of two variables can have stationary points of different types:

(a) A local minimum (b) A local maximum (c) A saddle point

Figure 4: Generic stationary points for a function of two variables.

Condition for a stationary point: .

• The function z(x, y) has a “stationary point” at (x0, y0) if

∂z

∂x

∣
∣
∣
∣
(x0,y0)

= 0 and
∂z

∂y

∣
∣
∣
∣
(x0,y0)

= 0.

• This condition provides two equations for the two unknowns x0 and y0. These
equations can have

– No solution, in which case the function z(x, y) has no stationary points.

– A unique solution, in which case the function z(x, y) has a single stationary
point.

– Multiple solutions, in which case the function z(x, y) has multiple station-
ary points.
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Classification of stationary points: .

• The nature of a stationary point is determined by the function’s second deriva-
tives. Here is a recipe for the classification of stationary points.

For each stationary point (x0, y0):

1. Determine the three second partial derivatives and evaluate them at the
stationary point:

A =
∂2z

∂x2

∣
∣
∣
∣
(x0,y0)

, B =
∂2z

∂y2

∣
∣
∣
∣
(x0,y0)

, and C =
∂2z

∂x∂y

∣
∣
∣
∣
(x0,y0)

.

2. Compute the “discriminant”

D = AB − C2.

3. Classify the stationary point according to the following cases:

D < 0 =⇒ Saddle point
D > 0 and ∂2z/∂x2 > 0

[
or ∂2z/∂y2 > 0

]
=⇒ Local minimum

D > 0 and ∂2z/∂x2 < 0
[
or ∂2z/∂y2 < 0

]
=⇒ Local maximum

D = 0 =⇒ Test is inconclusive
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2.4 Taylor series:

2.4.1 The leading-order terms

• The Taylor series of a function z(x, y) about a point (x0, y0) provides an approxi-
mation of the function in the neighbourhood of (x0, y0):

z(x0 + ε, y0 + δ) = z(x0, y0) +

+
∂z

∂x

∣
∣
∣
∣
(x0,y0)

ε +
∂z

∂y

∣
∣
∣
∣
(x0,y0)

δ +

+
1

2!

[

∂2z

∂x2

∣
∣
∣
∣
(x0,y0)

ε2 + 2
∂2z

∂x∂y

∣
∣
∣
∣
(x0,y0)

ε δ +
∂2z

∂y2

∣
∣
∣
∣
(x0,y0)

δ2

]

+ · · ·

for “small” values of ε and δ.

As in the 1D case, this may also be written as

z(x, y) = z(x0, y0) +

+
∂z

∂x

∣
∣
∣
∣
(x0,y0)

(x − x0) +
∂z

∂y

∣
∣
∣
∣
(x0,y0)

(y − y0) +

+
1

2!

[

∂2z

∂x2

∣
∣
∣
∣
(x0,y0)

(x − x0)
2 + 2

∂2z

∂x∂y

∣
∣
∣
∣
(x0,y0)

(x − x0) (y − y0) +
∂2z

∂y2

∣
∣
∣
∣
(x0,y0)

(y − y0)
2

]

+

+ · · ·

for “small” values of |x − x0| and |y − y0|.

2.4.2 The general form of the 2D Taylor series

The general expression for the Taylor series in two variables may be written as

f(x − x0, y − y0) =
∞∑

n=0

{

1

n!

n∑

k=0

(
n
k

)
∂nf

∂xn−k∂yk

∣
∣
∣
∣
(x0,y0)

(x − x0)
n−k(y − y0)

k

}

,

where (
n
k

)

=
n!

(n − k)! k!

are the binomial coefficients. Recall that the n binomial coefficients

(
n
0

)

,

(
n
1

)

, ...,

(
n
n

)

may be obtained from the n-th row of Pascal’s triangle:

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
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3 Example

We shall illustrate the various techniques by considering the function

z(x, y) = x3 + 3y − y3 − 3x.

Here is a sketch of the function:
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Figure 5: Sketch of the function z(x, y) = x3 + 3y − y3 − 3x.

Partial derivatives: .

• The partial derivatives are:
∂z

∂x
= 3x2 − 3.

∂z

∂y
= 3 − 3y2.

∂2z

∂x2
= 6x.

∂2z

∂y2
= −6y.

∂2z

∂x∂y
= 0.
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Stationary points: .

• The coordinates (x0, y0) of any stationary points are given by the solution of
the two equations:

∂z

∂x

∣
∣
∣
∣
(x0,y0)

= 3x2
0 − 3 = 0

∂z

∂y

∣
∣
∣
∣
(x0,y0)

= 3 − 3y2
0 = 0.

[In the present example, these can be solved directly for x0 = ±1 and y0 =
±1, as the first equation only contains x0 and the second one only y0. In
general, both equations will contain both unknowns and then have to be solved
simultaneously.]

We therefore have four critical points:

P1 = (1, 1) P2 = (1,−1) P3 = (−1, 1) P4 = (−1,−1).

• To classify the stationary points we evaluate the second derivatives in the
following table:

Point A = 6x0 B = −6y0 C = 0 D = AB − C2 Classification
P1 = (1, 1) 6 -6 0 -36 Saddle
P2 = (1,−1) 6 6 0 36 Local minimum
P3 = (−1, 1) -6 -6 0 36 Local maximum
P4 = (−1,−1) -6 6 0 -36 Saddle

You should confirm these results by inspecting the plot shown at the beginning
of the examples.

Taylor Expansion: .

• Finally, we determine the Taylor expansion of z(x, y) about the point (x, y) =
(2, 1), where z(2, 1) = 4. We start by evaluating the derivatives:

∂z

∂x

∣
∣
∣
∣
(2,1)

= 9

∂z

∂y

∣
∣
∣
∣
(2,1)

= 0

∂2z

∂x2

∣
∣
∣
∣
(2,1)

= 12

∂2z

∂y2

∣
∣
∣
∣
(2,1)

= −6

∂2z

∂x∂y

∣
∣
∣
∣
(2,1)

= 0.
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• In the vicinity of the point (x, y) = (2, 1), i.e. for small values of ε and δ, the
function z(x, y) can therefore be approximated as

z(x = 2 + ε, y = 1 + δ) = 4
︸︷︷︸

z(2,1)

+ 9
︸︷︷︸

∂z
∂x |(2,1)

ε + 0
︸︷︷︸

∂z
∂y |(2,1)

δ +

+
1

2!

[

12
︸︷︷︸

∂2z

∂x2

˛

˛

˛

(2,1)

ε2 + 2 × 0
︸︷︷︸

∂2z
∂x∂y

˛

˛

˛

(2,1)

δ ε + (−6)
︸︷︷︸

∂2z

∂y2

˛

˛

˛

(2,1)

δ2

]

+ ...

So
y(x = 2 + ε, y = 1 + δ) = 4 + 9ε + 6ε2 − 3δ2 + ...

or
y(x, y) = 4 + 9(x − 2) + 6(x − 2)2 − 3(y − 1)2 + ...


