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A Definition of Numerical Linear Algebra

Numerical linear algebra is the study of algorithms for
performing linear algebra computations.

For example,

Solve a system of linear equations, Ax = b, A ∈ Rn×n.

Find eigenvalues and eigenvectors, Ax = λx , A ∈ Rn×n.

Compute (when it exists) eA, A1/2, log(A), A ∈ Rn×n.

Find x ∈ Rn minimizing ‖Ax − b‖, A ∈ Rm×n, b ∈ Rm

(m ≥ n).
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Linear Systems

How to solve Ax = b, where A ∈ Rn×n is nonsingular?

Answer: x = A−1b.

Better: solve by Gaussian elimination (LU factorization).

Better: solve by Gaussian elimination with partial pivoting.

Also ask: is A large and sparse?
If so, try to preserve sparsity.

But first ask: what algebraic properties does A have?
If A is orthogonal then x = AT b.

Don’t forget to ask: what accuracy is required?
If low accuracy, consider an iterative method.

Also: what if we don’t know whether A is nonsingular?
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Beam Problem

////////////

��AA
///////

AA��
///////

-� L

I Transverse displacement u(x, t) governed by

ρA
∂2u
∂t2 + c(x)

∂u
∂t

+ EI
∂4u
∂x4 = 0.

u(0, t) = u′′(0, t) = u(L, t) = u′′(L, t) = 0.

I Separation of variables u(x, t) = eλtv(x, λ) yields the
eigenvalue problem for the free vibrations:

λ2ρAv(x, λ) + λc(x)v(x, λ) + EI
∂4

∂x4 v(x, λ) = 0.
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Discretized Beam Problem

Finite element method leads to

Q(λ)v = (λ2M + λD + K )v = 0 (∗)

with symmetric M,D,K ∈ Rn×n.

(∗) is a quadratic eigenvalue problem (generalizes
Av = λv ).

λ is an eigenvalue with corresponding eigenvector v .

Q(λ) has 2n eigenvalues , solutions of det(Q(λ)) = 0.
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Solution Process

Find all λ and v satisfying Q(λ)v = (λ2M + λD + K )v = 0.

I Commonly solved by linearization:

Convert Q(λ)v = 0 into (A− λB)ξ = 0, e.g.,

A− λB =

[
K 0
0 I

]
− λ

[
−D −M

I 0

]
, ξ =

[
v
λv

]
.

Solve (A− λB)ξ = 0 with a numerical method
(e.g., QZ algorithm).

Recover eigenvectors of Q(λ) from those of
A− λB.
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Eigenvalues of Q(λ) = λ2M + λD + K
When M, K are nonsingular then theoretically

C1(λ) = λ

[
M 0
0 I

]
+

[
D K
−I 0

]
,

L1(λ) = λ

[
M 0
0 −K

]
+

[
D K
K 0

]
,

L2(λ) = λ

[
0 M
M D

]
+

[
−M 0

0 K

]
have the same eigenvalues as Q(λ) = λ2M + λD + K .

What about numerically? Let’s try for the beam problem.
eC1 = eig([D K; -I O],-[M O; O I]); % C1

eL1 = eig([D K; K O],-[M O; O -K]); % L1

eL2 = eig([-M O; O K],-[O M; M D]); % L2

plot(eC1,’.r’); plot(eL1,’.r’); plot(eL2,’.r’)
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Computed Spectra of C1, L1 and L2
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Conditioning and Backward Error

• Condition number measures sensitivity of the solution
of a problem to perturbations in the data.
• Backward error measures how well the problem has

been solved.

error in solution <∼ condition number× backward error.

I Can we modify the problem into an equivalent one
whose solution is less sensitive to perturbations?

I Can we develop a numerically stable procedure to
solve the problem?
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Eigenvalue Parameter Scaling

Let λ = µγ, γ 6= 0 and convert Q(λ) = λ2M + λD + K to

Q(µγ) = µ2(γ2M) + µ(γD) + K = µ2M̃ + µD̃ + K̃ =: Q̃(µ) .

Can we choose γ such that

• the standard solution process in numerically stable,

• the eigenvalues of the linearizations are less sensitive
to perturbations?

Try γ = exp(r), where r is a tropical root of a tropical
scalar quadratic (Gaubert & Sharify 2009).
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Tropical Scalar Polynomials

Let (R ∪ {−∞},⊕,⊗) be the tropical semiring with

a⊕b = max(a,b), a⊗b = a+b for all a,b ∈ R ∪ {−∞}.

The piecewise affine function

p(x) =
d⊕

k=0

pk ⊗ x⊗k = max
0≤k≤d

(pk + kx), pk ∈ R∪ {−∞}

is a tropical polynomial of degree d .

The tropical roots of p(x) are the points of
nondifferentiability of p(x).
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Tropical Roots

max(1,−1 + x ,2x ,−2 + 3x) has roots 1/2, 1/2 and 2.

Tropical roots can be computed in linear time.

Classical roots of p(x) = a0 + a1x + · · ·+ anxn can be
bounded in terms of tropical roots of
ptrop(x) = max(log|a0|, log|a1|+ x , . . . , log|an|+ nx).

Let r1, r2 be the tropical roots of
ptrop(r) = max(log(‖K‖), log(‖D‖) + r , log(‖M‖) + 2r).
Under some assumptions, er1 and er2 are good
approximations of largest and smallest eigenvalues
in modulus of Q(λ) = λ2M + λD + K .
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Spectrum of C1,L2 before/after Scaling
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Where to Study Tropical Mathematics?

Vibrant area of research in both pure and applied
mathematics.

• Birmingham: Peter Butkovič.

• Manchester: Marianne Johnson, Mark Kambites, Mark
Muldoon.

• Warwick: Diane Maclagan.
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Where to Study Numerical Linear Algebra?

• Bath: Melina Freitag and Alastair Spence.

• Manchester: Jack Dongarra, Stefan Güttel, Nick
Higham, Françoise Tisseur.

• Oxford: Nick Trefethen, Andy Wathen.

• Strathclyde Des Higham, Philip Knight, Alison
Ramage.
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