Numerical Linear Algebra Applications of Tropical Mathematics

Françoise Tisseur School of Mathematics The University of Manchester

ftisseur@ma.man.ac.uk
http://www.ma.man.ac.uk/~ftisseur/
Prospects in Mathematics
December 18-19, 2012
Manchester

A Definition of Numerical Linear Algebra

Numerical linear algebra is the study of algorithms for performing linear algebra computations.

For example,

- Solve a system of linear equations, $A x=b, A \in \mathbb{R}^{n \times n}$.

■ Find eigenvalues and eigenvectors, $A x=\lambda x, A \in \mathbb{R}^{n \times n}$.
■ Compute (when it exists) $e^{A}, A^{1 / 2}, \log (A), A \in \mathbb{R}^{n \times n}$.

- Find $x \in \mathbb{R}^{n}$ minimizing $\|A x-b\|, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m}$ ($m \geq n$).

Linear Systems

How to solve $A x=b$, where $A \in \mathbb{R}^{n \times n}$ is nonsingular?

Linear Systems

How to solve $A x=b$, where $A \in \mathbb{R}^{n \times n}$ is nonsingular?
Answer: $x=A^{-1} b$.

Linear Systems

How to solve $A x=b$, where $A \in \mathbb{R}^{n \times n}$ is nonsingular?
Answer: $x=A^{-1} b$.
Better: solve by Gaussian elimination (LU factorization).

Linear Systems

How to solve $A x=b$, where $A \in \mathbb{R}^{n \times n}$ is nonsingular?
Answer: $x=A^{-1} b$.
Better: solve by Gaussian elimination (LU factorization).
Better: solve by Gaussian elimination with partial pivoting.

Linear Systems

How to solve $A x=b$, where $A \in \mathbb{R}^{n \times n}$ is nonsingular?
Answer: $x=A^{-1} b$.
Better: solve by Gaussian elimination (LU factorization).
Better: solve by Gaussian elimination with partial pivoting.
Also ask: is A large and sparse?
If so, try to preserve sparsity.

Linear Systems

How to solve $A x=b$, where $A \in \mathbb{R}^{n \times n}$ is nonsingular?
Answer: $x=A^{-1} b$.
Better: solve by Gaussian elimination (LU factorization).
Better: solve by Gaussian elimination with partial pivoting.
Also ask: is A large and sparse?
If so, try to preserve sparsity.
But first ask: what algebraic properties does A have?
If A is orthogonal then $x=A^{T} b$.

Linear Systems

How to solve $A x=b$, where $A \in \mathbb{R}^{n \times n}$ is nonsingular?
Answer: $x=A^{-1} b$.
Better: solve by Gaussian elimination (LU factorization).
Better: solve by Gaussian elimination with partial pivoting.
Also ask: is A large and sparse?
If so, try to preserve sparsity.
But first ask: what algebraic properties does A have?
If A is orthogonal then $x=A^{T} b$.
Don't forget to ask: what accuracy is required?
If low accuracy, consider an iterative method.

Linear Systems

How to solve $A x=b$, where $A \in \mathbb{R}^{n \times n}$ is nonsingular?
Answer: $x=A^{-1} b$.
Better: solve by Gaussian elimination (LU factorization).
Better: solve by Gaussian elimination with partial pivoting.
Also ask: is A large and sparse?
If so, try to preserve sparsity.
But first ask: what algebraic properties does A have?
If A is orthogonal then $x=A^{T} b$.
Don't forget to ask: what accuracy is required?
If low accuracy, consider an iterative method.
Also: what if we don't know whether A is nonsingular?

- Transverse displacement $u(\mathrm{x}, t)$ governed by

$$
\begin{gathered}
\rho A \frac{\partial^{2} u}{\partial t^{2}}+c(\mathrm{x}) \frac{\partial u}{\partial t}+E I \frac{\partial^{4} u}{\partial \mathrm{x}^{4}}=0 . \\
u(0, t)=u^{\prime \prime}(0, t)=u(L, t)=u^{\prime \prime}(L, t)=0 .
\end{gathered}
$$

- Separation of variables $u(x, t)=e^{\lambda t} v(x, \lambda)$ yields the eigenvalue problem for the free vibrations:

$$
\lambda^{2} \rho A v(\mathrm{x}, \lambda)+\lambda c(\mathrm{x}) v(\mathrm{x}, \lambda)+E I \frac{\partial^{4}}{\partial \mathrm{x}^{4}} v(\mathrm{x}, \lambda)=0 .
$$

Discretized Beam Problem

Finite element method leads to

$$
\begin{equation*}
Q(\lambda) v=\left(\lambda^{2} M+\lambda D+K\right) v=0 \tag{*}
\end{equation*}
$$

with symmetric $M, D, K \in \mathbb{R}^{n \times n}$.

- (*) is a quadratic eigenvalue problem (generalizes $A v=\lambda v)$.
- λ is an eigenvalue with corresponding eigenvector v.

■ $Q(\lambda)$ has $2 n$ eigenvalues, solutions of $\operatorname{det}(Q(\lambda))=0$.

Solution Process

Find all λ and v satisfying $Q(\lambda) v=\left(\lambda^{2} M+\lambda D+K\right) v=0$.

- Commonly solved by linearization:
- Convert $Q(\lambda) v=0$ into $(\mathcal{A}-\lambda \mathcal{B}) \xi=0$, e.g.,

$$
\mathcal{A}-\lambda \mathcal{B}=\left[\begin{array}{cc}
K & 0 \\
0 & l
\end{array}\right]-\lambda\left[\begin{array}{cc}
-D & -M \\
l & 0
\end{array}\right], \quad \xi=\left[\begin{array}{c}
v \\
\lambda v
\end{array}\right] .
$$

- Solve $(\mathcal{A}-\lambda \mathcal{B}) \xi=0$ with a numerical method (e.g., QZ algorithm).
- Recover eigenvectors of $Q(\lambda)$ from those of $\mathcal{A}-\lambda \mathcal{B}$.

Eigenvalues of $Q(\lambda)=\lambda^{2} M+\lambda D+K$

When M, K are nonsingular then theoretically

$$
\begin{aligned}
& C_{1}(\lambda)=\lambda\left[\begin{array}{cc}
M & 0 \\
0 & I
\end{array}\right]+\left[\begin{array}{cc}
D & K \\
-I & 0
\end{array}\right], \\
& L_{1}(\lambda)=\lambda\left[\begin{array}{cc}
M & 0 \\
0 & -K
\end{array}\right]+\left[\begin{array}{cc}
D & K \\
K & 0
\end{array}\right], \\
& L_{2}(\lambda)=\lambda\left[\begin{array}{cc}
0 & M \\
M & D
\end{array}\right]+\left[\begin{array}{cc}
-M & 0 \\
0 & K
\end{array}\right]
\end{aligned}
$$

have the same eigenvalues as $Q(\lambda)=\lambda^{2} M+\lambda D+K$.

Eigenvalues of $Q(\lambda)=\lambda^{2} M+\lambda D+K$

When M, K are nonsingular then theoretically

$$
\begin{aligned}
& C_{1}(\lambda)=\lambda\left[\begin{array}{cc}
M & 0 \\
0 & I
\end{array}\right]+\left[\begin{array}{cc}
D & K \\
-I & 0
\end{array}\right], \\
& L_{1}(\lambda)=\lambda\left[\begin{array}{cc}
M & 0 \\
0 & -K
\end{array}\right]+\left[\begin{array}{cc}
D & K \\
K & 0
\end{array}\right], \\
& L_{2}(\lambda)=\lambda\left[\begin{array}{cc}
0 & M \\
M & D
\end{array}\right]+\left[\begin{array}{cc}
-M & 0 \\
0 & K
\end{array}\right]
\end{aligned}
$$

have the same eigenvalues as $Q(\lambda)=\lambda^{2} M+\lambda D+K$.
What about numerically? Let's try for the beam problem.
eC1 = eig([D K; -I O],-[M O; O I]); \% C
eL1 = eig([D K; K O],-[M O; O -K]); \% L_{1}
eL2 = eig([-M O; O K],-[O M; M D]); \% L L_{2} plot (eC1,'.r');plot(eL1,'.r');plot(eL2,'.r')

Computed Spectra of C_{1}, L_{1} and L_{2}

Conditioning and Backward Error

- Condition number measures sensitivity of the solution of a problem to perturbations in the data.
- Backward error measures how well the problem has been solved.
error in solution \lesssim condition number \times backward error.

Conditioning and Backward Error

- Condition number measures sensitivity of the solution of a problem to perturbations in the data.
- Backward error measures how well the problem has been solved.
error in solution \lesssim condition number \times backward error.
- Can we modify the problem into an equivalent one whose solution is less sensitive to perturbations?
- Can we develop a numerically stable procedure to solve the problem?

Eigenvalue Parameter Scaling

Let $\lambda=\mu \gamma, \gamma \neq 0$ and convert $Q(\lambda)=\lambda^{2} M+\lambda D+K$ to

$$
Q(\mu \gamma)=\mu^{2}\left(\gamma^{2} M\right)+\mu(\gamma D)+K=\mu^{2} \widetilde{M}+\mu \widetilde{D}+\widetilde{K}=: \widetilde{Q}(\mu) .
$$

Can we choose γ such that

- the standard solution process in numerically stable,
- the eigenvalues of the linearizations are less sensitive to perturbations?

Eigenvalue Parameter Scaling

Let $\lambda=\mu \gamma, \gamma \neq 0$ and convert $Q(\lambda)=\lambda^{2} M+\lambda D+K$ to

$$
Q(\mu \gamma)=\mu^{2}\left(\gamma^{2} M\right)+\mu(\gamma D)+K=\mu^{2} \widetilde{M}+\mu \widetilde{D}+\widetilde{K}=: \widetilde{Q}(\mu) .
$$

Can we choose γ such that

- the standard solution process in numerically stable,
- the eigenvalues of the linearizations are less sensitive to perturbations?

Try $\gamma=\exp (r)$, where r is a tropical root of a tropical scalar quadratic (Gaubert \& Sharify 2009).

Tropical Scalar Polynomials

$■$ Let $(\mathbb{R} \cup\{-\infty\}, \oplus, \otimes)$ be the tropical semiring with
$a \oplus b=\max (a, b), \quad a \otimes b=a+b \quad$ for all $a, b \in \mathbb{R} \cup\{-\infty\}$.

- The piecewise affine function
$p(x)=\bigoplus_{k=0}^{d} p_{k} \otimes x^{\otimes k}=\max _{0 \leq k \leq d}\left(p_{k}+k x\right), \quad p_{k} \in \mathbb{R} \cup\{-\infty\}$
is a tropical polynomial of degree d.
- The tropical roots of $p(x)$ are the points of nondifferentiability of $p(x)$.

Tropical Roots

- max $(1,-1+x, 2 x,-2+3 x)$ has roots $1 / 2,1 / 2$ and 2 .
- Tropical roots can be computed in linear time.
- Classical roots of $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ can be bounded in terms of tropical roots of
$p_{\text {trop }}(x)=\max \left(\log \left|a_{0}\right|, \log \left|a_{1}\right|+x, \ldots, \log \left|a_{n}\right|+n x\right)$.
- Let r_{1}, r_{2} be the tropical roots of
$p_{\text {trop }}(r)=\max (\log (\|K\|), \log (\|D\|)+r, \log (\|M\|)+2 r)$. Under some assumptions, $e^{r_{1}}$ and $e^{r_{2}}$ are good approximations of largest and smallest eigenvalues in modulus of $Q(\lambda)=\lambda^{2} M+\lambda D+K$.

Spectrum of C_{1}, L_{2} before/after S caling

Where to Study Tropical Mathematics?

Vibrant area of research in both pure and applied mathematics.

- Birmingham: Peter Butkovič.
- Manchester: Marianne Johnson, Mark Kambites, Mark Muldoon.
- Warwick: Diane Maclagan.

Where to Study Numerical Linear Algebra?

- Bath: Melina Freitag and Alastair Spence.
- Manchester: Jack Dongarra, Stefan Güttel, Nick Higham, Françoise Tisseur.
- Oxford: Nick Trefethen, Andy Wathen.
- Strathclyde Des Higham, Philip Knight, Alison Ramage.

