The MASDOC Opportunity

Florian Theil
Mathematics Institute

LMS Prospects, 18 December 2012

Application deadline: 15 Feb 2013. Offers are made throughout the year

THE UNIVERSITY OF
 MABMCR

What is MASDOC

Mathematics and $S_{\text {tatistics }}$
 Centre for DoCtoral Training

What is MASDOC

Mathematics and $S_{\text {tatistics }}$
Centre for DoCtoral Training

- $1+3=4$-year Ph.D. programme
- Warwick Mathematics and Statistics
- around 9 studentships for 4 years funded, enhanced EPSRC stipend, plus others from different funding sources

What is MASDOC

Mathematics and Statistics
Centre for DoCtoral Training

- $1+3$ = 4-year Ph.D. programme
- Warwick Mathematics and Statistics
- around 9 studentships for 4 years funded, enhanced EPSRC stipend, plus others from different funding sources

Analysis
 Probability
 Numerics
 Statistics

MAS
DOC

What is offered?

Analysis Probability Numerics Statistics

stochastic PDEs
inverse problems
PDEs \& numerics
multiscale methods
statistical mechanics
complexity \& dynamical systems
sampling in high-dimensional spaces
weather forecasting
materials science
biomembranes
brain imaging
epidemiology
finance
climate

What is offered?

Analysis Probability Numerics
 Statistics

stochastic PDEs
inverse problems
PDEs \& numerics
multiscale methods
statistical mechanics
complexity \& dynamical systems
sampling in high-dimensional spaces
weather forecasting
materials science
biomembranes
brain imaging
epidemiology
finance
climate

Bonus:

- integrated in a cohesive group
- high-level support over 4 years

Structure of MASDOC

Year 1: M.Sc.

Year 2-4: Ph.D.

Structure of MASDOC

Year 1: M.Sc.

- Taught Modules
- Research Study Group
- Dissertation

$$
\begin{array}{r}
(\text { oct }- \text { mar } / \text { apr }) \\
(\text { dec }- \text { may }) \\
(\text { mar }- \text { sep })
\end{array}
$$

$1 / 2$ Taught $+1 / 2$ Research

Year 2-4: Ph.D.

Taught Modules

- offer 9 core modules; students take six, at least 4 core (flexibility)
- Assessed by written assignments, oral exams (no written exams)

Available Modules:

Taught Modules

- offer 9 core modules; students take six, at least 4 core (flexibility)
- Assessed by written assignments, oral exams (no written exams)

Available Modules:

- A1, A2: Modern theory of PDEs (Sobolev spaces, weak formulations, etc.)

Taught Modules

- offer 9 core modules; students take six, at least 4 core (flexibility)
- Assessed by written assignments, oral exams (no written exams)

Available Modules:

- A1, A2: Modern theory of PDEs (Sobolev spaces, weak formulations, etc.)
- C1, C2: introduction to $\mathrm{C}++$, numerical solution of ODEs and PDEs, numerical analysis

Taught Modules

- offer 9 core modules; students take six, at least 4 core (flexibility)
- Assessed by written assignments, oral exams (no written exams)

Available Modules:

- A1, A2: Modern theory of PDEs (Sobolev spaces, weak formulations, etc.)
- C1, C2: introduction to C++, numerical solution of ODEs and PDEs, numerical analysis
- P1, P2: a broad introduction to modern probability, stochastic processes, Markov chains, Brownian motion, techniques in probability

Taught Modules

- offer 9 core modules; students take six, at least 4 core (flexibility)
- Assessed by written assignments, oral exams (no written exams)

Available Modules:

- A1, A2: Modern theory of PDEs (Sobolev spaces, weak formulations, etc.)
- C1, C2: introduction to C++, numerical solution of ODEs and PDEs, numerical analysis
- P1, P2: a broad introduction to modern probability, stochastic processes, Markov chains, Brownian motion, techniques in probability
- S1, S2: formal statistical inference, computationally intensive methods, workshops on advanced topics

Taught Modules

- offer 9 core modules; students take six, at least 4 core (flexibility)
- Assessed by written assignments, oral exams (no written exams)

Available Modules:

- A1, A2: Modern theory of PDEs (Sobolev spaces, weak formulations, etc.)
- C1, C2: introduction to $\mathrm{C}++$, numerical solution of ODEs and PDEs, numerical analysis
- P1, P2: a broad introduction to modern probability, stochastic processes, Markov chains, Brownian motion, techniques in probability
- S1, S2: formal statistical inference, computationally intensive methods, workshops on advanced topics
- Reading Module: varying topics

Taught Modules

- offer 9 core modules; students take six, at least 4 core (flexibility)
- Assessed by written assignments, oral exams (no written exams)

Available Modules:

- A1, A2: Modern theory of PDEs (Sobolev spaces, weak formulations, etc.)
- C1, C2: introduction to $\mathrm{C}++$, numerical solution of ODEs and PDEs, numerical analysis
- P1, P2: a broad introduction to modern probability, stochastic processes, Markov chains, Brownian motion, techniques in probability
- S1, S2: formal statistical inference, computationally intensive methods, workshops on advanced topics
- Reading Module: varying topics
- M Level Maths \& Stats modules

Research Study Group

- Supervised group project on a "hot topic"
- Formulate and then execute a research project
- Get to know peers, develop research and presentation skills
- Hot Topics in 11/12:
- Media in Motion
- Mathematics of Multiscale Materials
- Stochastic Finance
- Hot Topics in 10/11:
- Stochastic PDEs
- Population Genetics
- Mathematics of Cloud formation

Examples of Student Projects: A \& N \& P

Surface PDEs:

(Lam, Elliott, Stinner)

$$
\frac{\partial u}{\partial t}-\Delta_{\Gamma} u+\frac{\Psi^{\prime}(u)}{\epsilon^{2}}=0 \quad \text { on manifold } \Gamma
$$

Examples of Student Projects: A \& N \& P

Surface PDEs:

(Lam, Elliott, Stinner)

$$
\frac{\partial u}{\partial t}-\Delta_{\Gamma} u+\frac{\Psi^{\prime}(u)}{\epsilon^{2}}=0 \quad \text { on manifold } \Gamma
$$

SPDEs on Manifolds:

(Scott, Hairer, Elliott)

$$
d u=\mathcal{A}(t, u) d t+\mathrm{i}_{t} d W, \quad u(t) \in L^{2}(\Gamma(t) ; \mathbb{R})
$$

Student Project on Probability

Percolation:

(Eyers, Adams)
Schramm/Smirnov/...theory of percolation

Example of Future Research Area

 SINR Model for Infectious Disease Epidemiology:

- eg Foot and Mouth disease
- $\approx 10^{5}$ sheep and cattle farms in the UK
- Predict spreading of decease
- Observations: e.g., Farm i is infected at time t
- Markov Process Model:
$\mathbb{P}(i$ infects j in $[t, t+\Delta t])=\beta_{i, j} \Delta t$
- Bayesian statistics:
- Uncertainty of parameters $\beta_{i, j}$
- Sampling in 10^{5}-dim. space

Why Warwick?

- large active research community
- inclusive, collaborative, creative atmosphere
- modern campus environment
- Warwick Symposium (since 1965):

11/12: Probability; 12/13: Number theory;
13/14: Statistical mechanics

- MIR@W: Mathematical Interdisciplinary Research at Warwick
- CRISM: Centre for research in statistical methodology
- Centre for Complexity Science
- Discrete Mathematics and Applications (DIMAP)
- Molecular Assembly (MOAC)
- Centre for Scientific Computing (CSC)

Why Warwick?

- large active research community
- inclusive, collaborative, creative atmosphere
- modern campus environment

Why Warwick?

- large active research community
- inclusive, collaborative, creative atmosphere
- modern campus environment

Applications

- We seek outstanding applicants open to interdisciplinary or specialised research in A/P/N/S
- we make offers throughout the year

www.warwick.ac.uk/go/masdoc
or Google: "masdoc"
or just get in touch to discuss

