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Motivation

Why do tumours become irregular?

(A) Blood vessels that accompany angiogenesis lead to non-uniform nutrient
delivery

(B) Inherent instability of the radially-symmetric avascular tumour
configurations to asymmetric perturbations

We explore alternative (B)



Model Development

Modelling Assumptions:

Single, growth-rate limiting nutrient (e.g. oxygen, glucose)
Cell proliferation and death generate spatial gradients in pressure within tumour
Pressure variations drive cell motion, down pressure gradients

Assume tumour’s growth restrained by surface tension forces which maintain its
compactness

Neglect necrosis and quiescence (Ryg = 0 = Rpy)

Restrict attention to 2-D (r, ) geometry



Model Equations

e Nutrient concentration, c¢(r, t)

0=V2-T

: 0
with 22 =0 atr=0 and C=cCoo ON I'(r,t)=0
?’l

e Pressure, p(r,t), and velocity, v(r, t)

No voids and incompressibility (using kinetic terms from lecture 2) =

Vw=8()—N(c)=c—Aa

Use Darcy’s law to relate v and p

v=—uVp

where the permeability . measures the sensitivity of the cells to pressure gradients



Model Equations (continued)

Combine the above equations to eliminate v
0=puV?p+(c—A4)

with @:0 atr=0 :SYMMFETRY

or

p=2yx onIl(r,t)=0

where x = mean curvature of tumour boundary and 0 < ~ = surface tension
coefficient

Tumour Boundary, I'(r,t) = 0 =r — R(0,t)

Assume boundary moves with cell velocity there

%—}? =v.n=—uVpmn, with R(6,0) = Ry(0)
t

where n = unit outward normal to tumour boundary



Model Summary

0=V2%c—T=uV?p+(c—A4)

with 2°—0=22 atr=o
or or

C=Coo, P=2vk OnT(r,t)=0

Of _ —uVpmn onI(r,t)=0=r— R(0,t)

ot

and R(0,0) = Ro(0) prescribed



Model Analysis

e When ¢ = ¢(r,t),p = p(r,t) and » = R(t) on the tumour boundary, the model
eqguations reduce to give

1
0:—3 (7“2%) —I‘:%2 (7“2@)%—0—)\/1

r2 Or or r< Or or
ar . Op
dt a H 87“ ’I"_R(t)

e Integrating the PDE for p, with % =0atr =0

Op 1 (7 5
Y — Aa)p3d
o 702/0 (c—Aa)p“dp

dR R
:>R2—=/ (c — Xg)r2dr
a  Jo

l.e. under radial symmetry we recover model from lecture 2



Model Analysis (continued)

e \We obtain following expressions for ¢, p and R:

€= Coo — —(R? —1?)

Y I 2 212 1 FR2> 2 2
- _ __— (R2_ — (o — A4 — — ) (R2—
P= %~ o r>+“(c PR N
dR R( FRQ)

— = — | Coo —Ap4 — —
t 3 15

e What happens when these radially-symmetric solutions are subjected to asymmetric
perturbations?



Linear Stability Analysis

e Suppose that 4% = 0. Then

r ¥ r
— ——R2—2, — _ R2 _ 2)2
€7 Coo 6(0 ) P Ry 120,u(0 )

and R32 = 111—5(%0 —A4)
e Seek solutions of the form
c=co(r) +eci(r,0,t) + O(e?)
e Substitute with trial solutions in model equations
0=V?(co+ec;)—T
0=uV?3(po +ep1) + (co +ec1 — Aa)

0
5; (flo +€f1) = —pV(po + ep1).m



Linear Stability Analysis (aside 1 — boundary conditions)

e Recall that ¢ = coo ONT'(7,¢t) =0
= Coo ~Co+ect ONTr =Ry —|—€R1(9,t)

de
Coo "~ Co(Ro —|—€R1,t) —|—661(R0 —|—€R1,t) = C()(Ro) + eR1 dO

/rl

(Ro) +ec1(Ro, t) + O(e?)

e Equate coefficients of O(e™):

O(1) : Co =Coo ONT =Ry

O(e): c1=—-—R 8807? onr = Ry

e In the same way, using p = 2yx onr = R(6,t) we find

O(1) : po =7/Ro onr = Ry
O(e): p1= —Rlaaif +2vk1 onr = Ry

1
where Kk~ — 4+ €erq
2Rgo



Linear Stability Analysis (aside 2 - normal derivatives)

Recall
aa—f = —uVpmn onIl(r,t) =0
Now
Op 10p Opo , Op1 ¢ 3p1) 9
Vp = — - | = | — , — O
P (87“ 7“80) (87“ +€8r r 00 +0()
Also



Linear Stability Analysis (continueq)

e Combining results from asides and equating coefficients of O(e), we find that

0= V2c1 = ,uV2p1 + c1

OR1 [apl d2P0:|

T - | 22 LRy

ot or dr? |,._g,
. Oci op1

with — =0=—= onr=0
or or

dco dpo Y

= —R1 — and = — Ry — —— (2R1 + L(R _
“ ' dr r=Rg i ' or r=Ry R(2) ( ' ( 1))T_R0

1 0 of L(f) . 1 0 ( 8f>
here V2f= — 2 (7290 4 th - - 9 97
WheTe / r2 Or (T 8T) r2 ! £(J) sin 6 00 Smeae

and R1(0,0) = R10(0), prescribed



Aside (V2¢, = 0)

1 0 Ocy 1 0 ) Oci
0=V2¢ = — 2 (22 oL
‘A= 2 (T ) t 2 en0 00 (Sm 50 )

eletc; =T(t)X(r)©(0). Then

TO O 50X TX 0 00
O=—F%—|r"— )+ _ sin 0 —
r2 sin 6 66 00

e Divide by ¢c; = T X©® (assuming c; # 0) and introduce separation constant, A > 0:

1 0 ( 28X> 1 0 ( ) 8@)
(== ) = A= — sin 6 —
X Ox or © sin 6 060 00




Aside (V2¢, = 0)

elet X = Xp(r)=rF (k=0,1,2,...)

— =k(k+1)=A
:>Xk8r (T or (k+1) b

Then © = O (0) where

0= —
sin 6 06

1
0 Gme%) + k(k +1)0y

e Letz =cosf and O (0) = Px(z)

d dP, :
= 0= - [(1 - zQ)d—k} + k(k+1)P Legendre’s Equation
z z

e Combine results, setting T'(¢) = xx(t), to get

C1 (’l", 0, t) = Xk (t)’rkPk (COS 0)



Linear Stability Analysis (continued)

e Using 0 = V?c; = uV?2pq + c1, we have

€1 (Ta 0, t) = Xk (t)rkpk (COS 0)

Xk (t)r? ) k
0.t) = t) — P, 0
Note:
dcy Op1
or or ar

e \We assume that

R1(6,t) = px () Py(cos )



Linear Stability Analysis (continued)

e Determine ., and p, by imposing BCs:

dc I'R
c1=—R =0 = Xk:RIS = — (—O> Pk
dr r=Ry 3
k+2
Y k 7 XkR()
= ——— (2R L(R _ =>m.Ry = —=(k—1)(k— 2
p1 R2 (2R1 + L(R1))|, g, = ™k R(%( )( )Pk + 212k 1 3)
OR 0 d? 1 d 2" R2
—1:—u(£+R1 po) = — 2Pk _ (k- 1) 0 _ k(k+2)
ot or dr? ) ,.—gr, Pk dt 15(2k+3) R}



Linear Stability Analysis

e R ~ Rp + epg(t)P;(cos 8) where

1 dpy (k— 1) QFR(Q) Y
pr dt 15(2k +3) R}

Notes:

dst’“ = 0 = system insensitive to perturbations involving P_1 (cos #). Such

perturbations correspond to translation of coordinate axes

If surface tension effects neglected (v = 0)

1dpk_<2FR(2)> (k—l)
o dt  \U 15 2k + 3

= system unstable to all asymmetric pertubations

If v > 0 (and £ > 1), then steady state is unstable to finite number of perturbations

1d . AT R?
= 2Pk S 0if k(k +2)(2k +3) < —20

pr dt 15py




Summary

We have developed a model that can describe 2- and 3D tumour growth (or
invasion)

Using linear stability analysis we have identified

Conditions under which radially-symmetric steady state is stable to
asymmetric perturbations involving Legendre polynomials

Conditions under which tumour is likely to be asymmetric (i.e. invasive or
infiltrative)

Multiple growth factors
Weakly nonlinear analysis (O(e?)-terms)

Mode interactions
Numerical methods
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