Modelling Solid Tumour Growth Lecture 3: Tumour Invasion and Symmetry Breaking

Helen Byrne

helen.byrne@nottingham.ac.uk

Centre for Mathematical Medicine, University of Nottingham

Outline

- Motivation
- Model development
- Model analysis
- Discussion

Motivation

- Why do tumours become irregular?
 - (A) Blood vessels that accompany angiogenesis lead to non-uniform nutrient delivery
 - (B) Inherent instability of the radially-symmetric avascular tumour configurations to asymmetric perturbations
- We explore alternative (B)

Model Development

Modelling Assumptions:

- Single, growth-rate limiting nutrient (e.g. oxygen, glucose)
- Cell proliferation and death generate spatial gradients in pressure within tumour
- Pressure variations drive cell motion, down pressure gradients
- Assume tumour's growth restrained by surface tension forces which maintain its compactness
- Neglect necrosis and quiescence $(R_H = 0 = R_N)$
- Restrict attention to 2-D (r, θ) geometry

Model Equations

• Nutrient concentration, c(r, t)

$$0 = \nabla^2 c - \Gamma$$

with
$$\frac{\partial c}{\partial r} = 0$$
 at $r = 0$ and $c = c_{\infty}$ on $\Gamma(\mathbf{r}, t) = 0$

- Pressure, $p(\boldsymbol{r},t)$, and velocity, $\boldsymbol{v}(\boldsymbol{r},t)$
 - No voids and incompressibility (using kinetic terms from lecture 2) \Rightarrow

 $\nabla \boldsymbol{.} \boldsymbol{v} = S(c) - N(c) = c - \lambda_A$

• Use Darcy's law to relate \boldsymbol{v} and p

$$\boldsymbol{v} = -\mu \nabla p$$

where the permeability μ measures the sensitivity of the cells to pressure gradients

Model Equations (continued)

Combine the above equations to eliminate v

$$0 = \mu \nabla^2 p + (c - \lambda_A)$$

with
$$\frac{\partial p}{\partial r} = 0$$
 at $r = 0$: SYMMETRY

$$p=2\gamma\kappa$$
 on $\Gamma(\boldsymbol{r},t)=0$

where $\kappa = \text{mean curvature}$ of tumour boundary and $0 \le \gamma = \text{surface tension}$ coefficient

Tumour Boundary, $\Gamma(\boldsymbol{r},t) = 0 = r - R(\theta,t)$

Assume boundary moves with cell velocity there

$$rac{\partial R}{\partial t} = \boldsymbol{v}.\boldsymbol{n} = -\mu \nabla p.\boldsymbol{n}, \quad \text{with } R(\theta, 0) = R_0(\theta)$$

where n = unit outward normal to tumour boundary

Model Summary

$$0 = \nabla^2 c - \Gamma = \mu \nabla^2 p + (c - \lambda_A)$$

with
$$\frac{\partial c}{\partial r} = 0 = \frac{\partial p}{\partial r}$$
 at $r = 0$

$$c=c_{\infty}, \ p=2\gamma\kappa \quad \text{on } \Gamma({m r},t)=0$$

$$rac{\partial R}{\partial t} = -\mu
abla p. oldsymbol{n}$$
 on $\Gamma(oldsymbol{r},t) = 0 = r - R(heta,t)$

and
$$R(\theta,0) = R_0(\theta)$$
 prescribed

Model Analysis

• When c = c(r, t), p = p(r, t) and r = R(t) on the tumour boundary, the model equations reduce to give

$$0 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial c}{\partial r} \right) - \Gamma = \frac{\mu}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial p}{\partial r} \right) + c - \lambda_A$$
$$\frac{dR}{dt} = -\mu \left. \frac{\partial p}{\partial r} \right|_{r=R(t)}$$

• Integrating the PDE for p, with $\frac{\partial p}{\partial r} = 0$ at r = 0

$$-\mu \frac{\partial p}{\partial r} = \frac{1}{r^2} \int_0^r (c - \lambda_A) \rho^2 d\rho$$

$$\Rightarrow R^2 \frac{dR}{dt} = \int_0^R (c - \lambda_A) r^2 dr$$

i.e. under radial symmetry we recover model from lecture 2

Model Analysis (continued)

• We obtain following expressions for c, p and R:

$$c = c_{\infty} - \frac{\Gamma}{6} (R^2 - r^2)$$

$$p = \frac{\gamma}{R} - \frac{\Gamma}{120\mu} (R^2 - r^2)^2 + \frac{1}{6\mu} \left(c_{\infty} - \lambda_A - \frac{\Gamma R^2}{15} \right) (R^2 - r^2).$$

$$\frac{dR}{dt} = \frac{R}{3} \left(c_{\infty} - \lambda_A - \frac{\Gamma R^2}{15} \right)$$

• What happens when these radially-symmetric solutions are subjected to asymmetric perturbations?

Linear Stability Analysis

• Suppose that $\frac{dR}{dt} = 0$. Then

$$c = c_{\infty} - \frac{\Gamma}{6}(R_0^2 - r^2), \qquad p = \frac{\gamma}{R_0} - \frac{\Gamma}{120\mu}(R_0^2 - r^2)^2$$

and
$$R_0^2 = \frac{15}{\Gamma}(c_\infty - \lambda_A)$$

• Seek solutions of the form

$$c = c_0(r) + \epsilon c_1(r, \theta, t) + O(\epsilon^2)$$

• Substitute with trial solutions in model equations

$$0 = \nabla^2 (c_0 + \epsilon c_1) - \Gamma$$

$$0 = \mu \nabla^2 (p_0 + \epsilon p_1) + (c_0 + \epsilon c_1 - \lambda_A)$$

$$\frac{\partial}{\partial t}(R_0 + \epsilon R_1) = -\mu \nabla (p_0 + \epsilon p_1) . \boldsymbol{n}$$

Linear Stability Analysis (aside 1 – boundary conditions)

• Recall that $c = c_{\infty}$ on $\Gamma(\boldsymbol{r}, t) = 0$

$$\Rightarrow c_{\infty} \sim c_0 + \epsilon c_1$$
 on $r = R_0 + \epsilon R_1(\theta, t)$

 $c_{\infty} \sim c_0(R_0 + \epsilon R_1, t) + \epsilon c_1(R_0 + \epsilon R_1, t) = c_0(R_0) + \epsilon R_1 \frac{dc_0}{dr}(R_0) + \epsilon c_1(R_0, t) + O(\epsilon^2)$

• Equate coefficients of $O(\epsilon^n)$:

$$O(1): c_0 = c_\infty on r = R_0$$

$$O(\epsilon): c_1 = -R_1 \frac{\partial c_0}{\partial r} on r = R_0$$

• In the same way, using $p=2\gamma\kappa$ on $r=R(\theta,t)$ we find

$$\begin{array}{ll} O(1): & p_0 = \gamma/R_0 & \text{on } r = R_0 \\ O(\epsilon): & p_1 = -R_1 \frac{\partial p_0}{\partial r} + 2\gamma \kappa_1 & \text{on } r = R_0 \\ & \text{where} & \kappa \sim \frac{1}{2R_0} + \epsilon \kappa_1 \end{array}$$

Linear Stability Analysis (aside 2 - normal derivatives)

Recall

$$rac{\partial R}{\partial t} = -\mu
abla p. oldsymbol{n} \quad ext{on } \Gamma(oldsymbol{r},t) = 0$$

Now

$$\nabla p = \left(\frac{\partial p}{\partial r}, \frac{1}{r}\frac{\partial p}{\partial \theta}\right) = \left(\frac{\partial p_0}{\partial r} + \epsilon\frac{\partial p_1}{\partial r}, \frac{\epsilon}{r}\frac{\partial p_1}{\partial \theta}\right) + O(\epsilon^2)$$

Also

 $n = \dots$

 $\Rightarrow \dots$

Linear Stability Analysis (continued)

• Combining results from asides and equating coefficients of $O(\epsilon)$, we find that

$$0 = \nabla^2 c_1 = \mu \nabla^2 p_1 + c_1$$

$$\frac{\partial R_1}{\partial t} = -\mu \left[\frac{\partial p_1}{\partial r} + R_1 \frac{d^2 p_0}{dr^2} \right]_{r=R_0}$$

with
$$\frac{\partial c_1}{\partial r} = 0 = \frac{\partial p_1}{\partial r}$$
 on $r = 0$

$$c_{1} = -R_{1} \left. \frac{dc_{0}}{dr} \right|_{r=R_{0}} \quad \text{and} \quad p_{1} = -R_{1} \left. \frac{\partial p_{0}}{\partial r} \right|_{r=R_{0}} - \frac{\gamma}{R_{0}^{2}} \left(2R_{1} + \mathcal{L}(R_{1}) \right)_{r=R_{0}}$$
$$\underbrace{=}_{\equiv 0}$$

where
$$\nabla^2 f = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial f}{\partial r} \right) + \frac{\mathcal{L}(f)}{r^2}$$
 with $\mathcal{L}(f) = \frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right)$

and $R_1(\theta,0) = R_{10}(\theta)$, prescribed

Aside ($\nabla^2 c_1 = 0$)

$$0 = \nabla^2 c_1 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial c_1}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial c_1}{\partial \theta} \right)$$

• Let $c_1 = T(t)X(r)\Theta(\theta)$. Then

$$0 = \frac{T\Theta}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial X}{\partial r} \right) + \frac{TX}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial \Theta}{\partial \theta} \right)$$

• Divide by $c_1 = TX\Theta$ (assuming $c_1 \neq 0$) and introduce separation constant, $\Lambda > 0$:

$$\frac{1}{X}\frac{\partial}{\partial x}\left(r^2\frac{\partial X}{\partial r}\right) = \Lambda = -\frac{1}{\Theta\sin\theta}\frac{\partial}{\partial\theta}\left(\sin\theta\frac{\partial\Theta}{\partial\theta}\right)$$

Aside ($\nabla^2 c_1 = 0$)

• Let
$$X = X_k(r) = r^k \ (k = 0, 1, 2, ...)$$

$$\Rightarrow \frac{1}{X_k} \frac{\partial}{\partial r} \left(r^2 \frac{\partial X_k}{\partial r} \right) = k(k+1) = \Lambda_k$$

Then $\Theta = \Theta_k(\theta)$ where

$$0 = \frac{1}{\sin\theta} \frac{\partial}{\partial\theta} \left(\sin\theta \frac{\partial\Theta_k}{\partial\theta} \right) + k(k+1)\Theta_k$$

• Let
$$z = \cos \theta$$
 and $\Theta_k(\theta) = P_k(z)$

$$\Rightarrow 0 = \frac{d}{dz} \left[(1 - z^2) \frac{dP_k}{dz} \right] + k(k+1)P_k \qquad \text{Legendre's Equation}$$

• Combine results, setting $T(t) = \chi_k(t)$, to get

$$c_1(r,\theta,t) = \chi_k(t)r^k P_k(\cos\theta)$$

Linear Stability Analysis (continued)

• Using $0 = \nabla^2 c_1 = \mu \nabla^2 p_1 + c_1$, we have

$$c_1(r,\theta,t) = \chi_k(t)r^k P_k(\cos\theta)$$

$$p_1(r,\theta,t) = \left(\pi_k(t) - \frac{\chi_k(t)r^2}{2\mu(2k+3)}\right)r^k P_k(\cos\theta)$$

Note:

$$rac{\partial c_1}{\partial r} = 0 = rac{\partial p_1}{\partial r} \quad ext{at} \ r = 0$$

• We assume that

 $R_1(\theta, t) = \rho_k(t) P_l(\cos \theta)$

Linear Stability Analysis (continued)

• Determine χ_k, π_k and ρ_k by imposing BCs:

$$c_1 = -R_1 \left. \frac{dc_0}{dr} \right|_{r=R_0} \Rightarrow \chi_k R_0^k = -\left(\frac{\Gamma R_0}{3}\right) \rho_k$$

$$p_1 = -\frac{\gamma}{R_0^2} \left(2R_1 + \mathcal{L}(R_1) \right)|_{r=R_0} \Rightarrow \pi_k R_0^k = \frac{\gamma}{R_0^2} (k-1)(k-2)\rho_k + \frac{\chi_k R_0^{k+2}}{2\mu(2k+3)}$$

$$\frac{\partial R_1}{\partial t} = -\mu \left(\frac{\partial p_1}{\partial r} + R_1 \frac{d^2 p_0}{dr^2} \right)_{r=R_0} \Rightarrow \frac{1}{\rho_k} \frac{d\rho_k}{dt} = (k-1) \left[\frac{2\Gamma R_0^2}{15(2k+3)} - \frac{\gamma\mu}{R_0^3} k(k+2) \right]$$

Linear Stability Analysis

• $R \sim R_0 + \epsilon \rho_k(t) P_l(\cos \theta)$ where

$$\frac{1}{\rho_k} \frac{d\rho_k}{dt} = (k-1) \left[\frac{2\Gamma R_0^2}{15(2k+3)} - \frac{\gamma\mu}{R_0^3} k(k+2) \right]$$

Notes:

- $\frac{d\rho_k}{dt} = 0 \Rightarrow$ system insensitive to perturbations involving $P_{k=1}(\cos\theta)$. Such perturbations correspond to translation of coordinate axes
- If surface tension effects neglected ($\gamma = 0$)

$$\frac{1}{\rho_k} \frac{d\rho_k}{dt} = \left(\frac{2\Gamma R_0^2}{15}\right) \left(\frac{k-1}{2k+3}\right)$$

 \Rightarrow system unstable to all asymmetric pertubations

• If $\gamma > 0$ (and k > 1), then steady state is unstable to finite number of perturbations

$$\frac{1}{\rho_k}\frac{d\rho_k}{dt} > 0 \text{ if } k(k+2)(2k+3) < \frac{4\Gamma R_0^5}{15\mu\gamma}$$

Summary

- We have developed a model that can describe 2- and 3D tumour growth (or invasion)
- Using linear stability analysis we have identified
 - Conditions under which radially-symmetric steady state is stable to asymmetric perturbations involving Legendre polynomials
 - Conditions under which tumour is likely to be asymmetric (i.e. invasive or infiltrative)

Model Extensions

- Multiple growth factors
- Weakly nonlinear analysis ($O(\epsilon^2)$ -terms)
- Mode interactions
- Numerical methods