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A miscellany of new strategies, experimental techniques and theoretical approaches
are emerging in the ongoing battle against cancer. Nevertheless, as new, ground-
breaking discoveries relating to many and diverse areas of cancer research are
made, scientists often have recourse to mathematical modelling in order to elu-
cidate and interpret these experimental findings. Indeed, experimentalists and clin-
icians alike are becoming increasingly aware of the possibilities afforded by math-
ematical modelling, recognising that current medical techniques and experimental
approaches are often unable to distinguish between various possible mechanisms
underlying important aspects of tumour development.

This short treatise presents a concise history of the study of solid tumour
growth, illustrating the development of mathematical approaches from the early
decades of the twentieth century to the present time. Most importantly these
mathematical investigations are interwoven with the associated experimental work,
showing the crucial relationship between experimental and theoretical approaches,
which together have moulded our understanding of tumour growth and contributed
to current anti-cancer treatments.

Thus, a selection of mathematical publications, including the influential the-
oretical studies by Burton, Greenspan, Liottaet al., McElwain and co-workers,
Adam and Maggelakis, and Byrne and co-workers are juxtaposed with the seminal
experimental findings of Grayet al. on oxygenation and radio-sensitivity, Folkman
on angiogenesis, Dorieet al. on cell migration and a wide variety of other crucial
discoveries. In this way the development of this field of research through the inter-
actions of these different approaches is illuminated, demonstrating the origins of
our current understanding of the disease.

c© 2003 Society for Mathematical Biology. Published by Elsevier Ltd. All rights
reserved.

1. INTRODUCTION

It has been stated recently that ‘cancer is now poised to overtake heart disease as
the major cause of premature death in the Western World’ (Byrne, 1999a). Indeed,
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a recent report on worldwide cancer rates by the World Health Organization’s Inter-
national Agency for Research on Cancer (IARC) (Pisaniet al., 2001) illustrates that
North America leads the world in the rate of cancers diagnosed in adults, followed
closely by Western Europe and Australia and New Zealand. In 1994 in Britain,
for example, one in three were expected to develop the disease over their lifetimes
(Imperial Cancer Research Fund, 1994), with a likely increase to one in two by
2010 based on the trends at that time (Perumpanani, 1996). Similarly, a recent pub-
lication of theAustralian Institute of Health and Welfare(1999) explains that ‘at
the incidence rates prevailing in 1999 (in Australia), it would be expected that one
in three men and one in four women would be directly affected by cancer in the first
75 years of life. Further, an estimated 254 000 potential years of life would be lost
to the community each year as a result of people dying of cancer before the age of
75. Cancer currently accounts for 29% of male deaths and 25% of female deaths’.

Reflecting on the seriousness of this disease,Perumpanani(1996) remarks that
‘the research community has taken on the challenge posed by cancer on a war
footing and this has resulted in recent years in an explosion in our understanding
of cancer’. Interestingly,Alberts et al. (2002) observe that ‘the emphasis given to
cancer research has profoundly benefited a much wider area of medical knowledge
than that of cancer alone’, explaining that ‘the effort to combat cancer has driven
many fundamental discoveries in cell biology’.

Nevertheless, the study of cancer is not new.Porter (1997) claims that ‘breast
cancer operations date back to antiquity’, giving the example of Aetius of Amida
who ‘had emphasized that the knife should cut healthy tissue around a tumour and
that a cauterizing-iron should stanch the blood’. In a treatise on the history of
breast cancer,Olson(2002) further explains that ‘medical practitioners the world
over, today and eons ago, have struggled with the disease. Egyptians of the New
Kingdom—more than 3500 years ago—were the first’. Indeed,Ward(1997) asserts
that ‘it is clear from various texts of ancient Greece, Egypt and Rome that the early
physicians were well aware of the nature of cancer and were capable of making a
correct diagnosis and performing successful therapy’.

Clearly the study of tumour growth and the development of anti-cancer therapies
are most worthwhile pursuits, having significant potential to enhance quality of life
and increase life-expectancies, which may, in turn, yield considerable economic
and social benefits.

Notwithstanding recent advances,Gatenby (1998) explains that ‘recent research
in tumour biology, particularly that using new techniques from molecular biol-
ogy, has produced information at an explosive pace. Yet a conceptual framework
within which all these new (and old) data can be fitted is lacking’.Gatenby and
Maini (2003) add that ‘clinical oncologists and tumour biologists possess virtu-
ally no comprehensive theoretical model to serve as a framework for understand-
ing, organizing and applying these data’ noting the necessity to ‘(develop) mecha-
nistic models that provide real insights into critical parameters that control sys-
tem dynamics’. Murray (2002) concurs, asserting that ‘the goal is to develop
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models which capture the essence of various interactions allowing their outcome
to be more fully understood’.

Indeed,Byrne(1999a) asserts that ‘in order to develop effective treatments, it is
important to identify the mechanisms controlling cancer growth, how they interact,
and how they can most easily be manipulated to eradicate (or manage) the disease.
In order to gain such insight, it isusuallynecessary to perform large numbers of
time-consuming and intricate experiments—but notalways. Through the develop-
ment and solution of mathematical models that describe different aspects of solid
tumour growth, applied mathematics has the potential to prevent excessive experi-
mentation and also to provide biologists with complementary and valuable insight
into the mechanisms that may control the development of solid tumours’.

Moreover, experimentalists and clinicians are becoming increasingly aware of
the role of mathematical modelling as a new way forward, recognising that current
medical techniques and experimental approaches are often unable to distinguish
between various possible mechanisms underlying important aspects of tumour gro-
wth (Kunz-Schughartet al., 1998).

The present paper reviews of some of the important mathematical contributions
to the study of solid tumour growth. Owing to the enormous body of theoreti-
cal and experimental publications devoted to solid tumour growth in the literature,
however, no such review could be comprehensive. Nevertheless, it provides a con-
cise history of the study of tumour growth, discussing some of the most influential
mathematical models and their relationship to experimental studies, and illustrat-
ing how the field of cancer research has evolved due to these interactions between
theoretical and experimental approaches. While the emphasis is primarily on deter-
ministic models, some significant papers which employ stochastic approaches are
also noted. Section 2presents some of the earliest mathematical contributions
to the study of solid tumours, beginning with Hill’s study of diffusion in tissues
(Hill , 1928), and leading to Burton’s often-cited paper on tumour growth dynamics
as a diffusion problem (Burton, 1966). Section 3discusses some early theoret-
ical approaches to the study of avascular tumours and multicell spheroids in the
wake of Folkman’s important discoveries relating to angiogenesis and a prevascu-
lar stage of tumour development. Liotta and co-workers’ seminal contributions to
the theoretical study of tumour invasion and metastasis in the 1970s (Liotta et al.,
1974a,b,c, 1976b; Saidelet al., 1976) are presented inSection 4. Thedevelopment
of mathematical approaches in the 1980s is discussed inSection 5, emphasizing
the prominent role of the studies by Adam and Maggelakis (Adam, 1986, 1987a,b;
Adam and Maggelakis, 1989, 1990; Maggelakis and Adam, 1990). Section 6
gives an overview of the enormous body of mathematical papers on solid tumour
growth published in the 1990s, including those relating to cell migration in mul-
ticell spheroids and tumour cords (Section 6.1), multiphase models (Section 6.2),
mechanical models and models of residual stress formation (Section 6.3), models
of invasion and metastasis (Section 6.4) and models of avascular (Section 6.5) and
vascular (Section 6.6) tumour growth.
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2. THE EARLY MODELS OF TUMOUR GROWTH BY DIFFUSION: HILL TO

BURTON

While not applied specifically to the study of neoplastic tissues, some of the early
work on diffusion in tissues byHill (1928) set the scene for many later mathemat-
ical models of solid tumours. Hill understood that ‘the diffusion of dissolved sub-
stances through cells and tissues is a determining factor in many vital processes’,
and used mathematical approaches to study a number of important physiological
processes such as the diffusion of oxygen into a solid where it is consumed by
metabolic processes, the outward diffusion of lactic acid from a solid which pro-
duces it by metabolic processes and the diffusion of oxygen away from a blood
vessel into a region with an oxygen debt.

While diffusion processes would later become an important part of tumour mod-
els, the earliest mathematical studies of solid tumours focused purely on growth
dynamics.Mayneord(1932), for example, conducted experiments on the effects of
X-radiations on the growth of Jensen’s rat sarcoma in 1932 and noticed that in the
final stages of growth the tumours grew linearly with time, an observation corrob-
orated by the study of spontaneous carcinomas of the mouse reported byHaddow
(1938) some sixyears later. The rate of a tumour’s growth was of significant inter-
est at the time since, asMayneord(1932) explained, ‘the mere disappearance or
continued growth of the tumours after irradiation afforded a very inadequate crite-
rion of the effect of the radiations’. Since histological examination revealed that
active growth was restricted to a thin shell at the periphery of the tumour, May-
neord developed a mathematical model which investigated the effect of different
distributions of actively dividing cells. This illustrated that when the entire tissue
volume was growing exponential growth was expected, with the growth rate gradu-
ally reducing as the region of active growth was progressively restricted to an outer
shell of tissue of decreasing thickness, ultimately arriving at a linear growth rate.

As experimental studies on radiotherapy continued, many researchers became
interested in the role of the hypoxic tumour cell in the radio-sensitivity of tumours,
beginning with the irradiation studies of tumour slicesin vitro by Cramer (1934)
and thein vivostudies on tar warts byMottram(1936), culminating in an influential
paper byGray et al. (1955), which first led clinicians to attempt radiotherapy at
increased oxygen pressures.

In 1955Thomlinson and Gray(1955) proposed a mathematical model of the dif-
fusion and consumption of oxygen to supplement an experimental investigation of
some types of bronchial carcinomata which grow in solid rods which ‘are devoid of
capillaries and which comprise cells nourished by diffusion of metabolites inwards
from the immediately surrounding stroma’. Large tumours of this kind often con-
sist of necrotic centres surrounded by ‘intact tumour cells which appear as rings’.
Recognising that ‘there must exist a falling gradient in oxygen tension between the
periphery and the centre of each tumour cord’ and that ‘cells which are anoxic at
the time of irradiation are generally much less damaged by a given dose of X- or
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γ -radiation than those which are well oxygenated’, the investigators appealed to
some of the theory developed byHill (1928) to estimate the critical value of the
tumour cord’s outer radius for which the concentration of oxygen just reaches zero
at the centre. Interestingly, the model showed that ‘the scale of the observed his-
tological pattern is of the order to be expected if the supply of oxygen were the
limiting factor which determines the onset of necrosis’, although the investigators
cautiously added that ‘this numerical agreement is not advanced as evidence that
the cells at the centre in fact die through lack of oxygen’, conceding that the role
of katabolites had not been considered.

It was Burton (1966), however, who developed a diffusion model which exam-
ined both the distribution of oxygen in a spherical tumour ‘where the blood supply
is completely confined to the surface’ and the resulting ‘relative radius of the cen-
tral zone to the total radius’, which was then used to explain how the growth curve
could fit a Gompertzian expression.

The Gompertzian equation originated from the actuarial model developed by
Gompertz (1825), and was applied to the study of growth in biological and
economic contexts in 1932 byWinsor (1932). Laird et al. (1965) showed that
the Gompertzian equation could describe the normal growth of an organism such
as the guinea pig over an incredible 10 000-fold range of growth because of the
equation’s ability to exhibit exponential retardation—a feature not incorporated
in other growth equations used in biological contexts at that time such as the
allometry equation (Huxley, 1932), the monomolecular equation (Brody, 1945;
von Bertalanffy, 1960), and the logistic equation (Robertson, 1923). In addition to
using the Gompertzian equation to examine normal growth (Laird, 1965), Laird
(1964) illustrated that the growth of a variety of primary and transplanted tumours
of the mouse, rat and rabbit could be described very well by the Gompertzian
relation.

Several explanations had been advanced for the underlying mechanism of this
exponential retardation in tumour growth rates. WhileLaird (1964) argued that
‘considering the data available at the present time, it seems likely that the observed
deceleration of tumour growth is due at least in part to an actual increase in the
mean generation time during tumour growth’,Mayneord(1932) hadshown that
such a retardation could be achieved by the formation of a necrotic region in the
centre of a tumour, gradually reducing the region of active growth to a thin shell
at the tumour surface.Burton (1966) favoured Mayneord’s explanation, modelling
the effects of a diminishing growth fraction, while the mitotic rate of viable cells
remained a constant. In addition, appealing to the experimental work byStainsby
and Otis(1961) and Chance (1957), the oxygen consumption per unit volume
was considered independent of oxygen tension except below a critical oxygen
tension for necrosis where oxygen consumption ceased. In proposing a mecha-
nistic basis for the growth dynamics of the tumour in this way, Burton was also
able to overcome the limitations of the Gompertzian relation, predicting growth
which closely resembles Gompertzian growth over the 100- to 1000-fold range
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of tumour volumes, but ultimately yielding the experimentally-observed linear
growth.

3. EARLY MODELS OF AVASCULAR TUMOURS AND MULTICELL

SPHEROIDS

Theseminal work on tumour angiogenesis byFolkman(1974) arosefrom the dis-
covery of dormant avascular tumour nodulesin vivo. Greene(1961) had observed
that the growth of tumour fragments implanted in the anterior chamber of the
guinea pig eye ceased because of their inability to acquire a vasculature.Folkman
et al. (1966) also discovered that tumours implanted in isolated perfused organs
could not grow beyond a diameter of three to four millimetres, and observed that
neovascularisation of tumour tissue inin vitro organ cultures was imperative in
sponsoring continued growth (Gimbrone et al., 1969). Folkman and Hochberg
(1973) were soon able to show that ‘cells when removed from a plane surface and
forced to grow in three dimensions in spheroidal or ellipsoidal population, will not
expand beyond a critical diameter and cell number, regardless of how often new
medium is provided or how much open space is made available’. Indeed, several
groups of investigators, such asSutherland et al. (1971), had begun to grow mul-
ticell spheroids in suspension as an experimental model for the study ofin vivo
nodular carcinomas, a technique which would also be employed by later investi-
gators to study micrometastases and intervascular microregions of larger tumours
(Sutherland, 1988).

The emerging interest in both the avascular nodules which precede angiogenesis
as well as the multicell spheroid model encouraged various new approaches to the
mathematical modelling of solid tumours. [Angiogenesis is, itself, the subject of
considerable attention by mathematicians, and will not be addressed further in the
present review. SeeMantzariset al. (in press) for an excellent recent review of the
mathematical modelling of tumour-induced angiogenesis.]

Greenspan(1972) extended the models byBurton (1966) andThomlinson and
Gray (1955) by introducing a surface tension among the living cancer cells in
order to maintain a compact, solid mass, and by assuming that ‘necrotic cellular
debris continually disintegrates into simpler chemical compounds that are freely
permeable through cell membranes’. In this way, the tissue volume loss due to
necrosis would be replaced by the inward motion of cells from the outer region
as a result of the forces of adhesion and surface tension, thereby explaining the
existence of a steady-state tumour size. Noting the finding bySutherland et al.
(1971) that the mitotic index of proliferating cells tended to decrease with dis-
tance from the spheroid surface once the aggregate had reached a critical diame-
ter, Greenspan also assumed that ‘a chemical is produced somewhere within the
tumour which inhibits the mitosis of cancer cells without causing their death’
once the concentration of the chemical reaches a critical level. These effects were
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combined in an integro-differential equation for the evolution of the tumour radius,
and a reaction–diffusion equation for both the concentration of nutrient and that of
the inhibitor.

Two different possibilities were then considered separately. While the first model
assumed that the chemical inhibitor was a result of inadequate nutrient supply and
a product of necrosis, the second model assumed that the inhibitor was produced
purely by the metabolic processes of living cells, with no katabolites associated
with necrosis. Qualitatively, the two models predicted some overall similarities in
the development of the spheroid, with three distinct growth phases: an initial expo-
nential growth phase, followed by some degree of retardation, culminating in a final
phase where retardation by both mitotic inhibition and cell death ultimately gave
rise to dormancy. Nevertheless, each of the two models predicted a distinctly differ-
ent growth pattern prior to arriving at a steady state, an outcome which Greenspan
hoped would allow future experiments to distinguish between the two possible
sources of growth inhibition. Regrettably, no such experimental work appears to
have been undertaken.Greenspan(1974) later published a note which studied a
problem of one-dimensional growth incorporating all the important phenomena
considered in previous mathematical models (Burton, 1966; Greenspan, 1972), in
which it wasemphasized that the model could allow the primary source of growth
inhibition to be determined from a histological examination of the steady-state cell
population.

Glass(1973) wasalso interested in the role of growth inhibitors in tumour devel-
opment, developing a mathematical model which predicted patterns of mitotic
activity in a growing tumour. This mathematical study was primarily motivated by
experimental evidence documented byWeiss(2000), Osgood(1957) andBullough
(1965) which suggested that ‘control of cellular replication in a number of mam-
malian tissues is at least partially determined by a negative feedback from the tis-
sue itself’ caused by mitotic inhibitors calledchalones. Importantly, Bullough
(1965) and Bullough and Deol(1971) believed that a breakdown in the normal
functioning of this chalone mechanism may be responsible for the uncontrolled
tissue growth in at least some cancers. Glass therefore developed a simple one-
dimensional schematic model which described the patterns of mitotic activity in a
growing tumour. Chalones were assumed to be produced uniformly throughout the
tissue, which then diffused beyond the tissue boundaries, and decayed. A key mod-
elling assumption was the regulation of growth by a ‘switch mechanism’, where
mitosis occurred below a critical value of chalone concentration, and was com-
pletely inhibited above this value. In contrast to Greenspan’s work (Greenspan,
1972), no volume loss mechanism such as necrosis was considered, and ‘stable
tissue growth’ was assumed to occur when the chalone concentration was less than
the mitotic threshold throughout the tissue.

Shymko and Glass(1976) extended this model to two and three dimensions,
attempting to determine the effect of different geometries on the pattern and stabil-
ity of growth, noting the work ofFolkman and Hochberg(1973) which illustrated
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that tissues cultured in a spheroidal geometry exhibit self-limiting growth while
exhibiting unlimited growth as a monolayer.

Greenspan(1976) also extended his own modelling framework to consider the
stability to asymmetric perturbations of the spherical shape of an equilibrium-sized
tumour, being mindful of the experiments bySutherlandet al. (1971) where some
cell aggregates disintegrated at a certain stage of development. As in earlier work
(Greenspan, 1972), this formulation considered a thin proliferating layer near the
surface and a large, central necrotic core, where ‘the birth or death of cells pro-
duces internal pressure differentials which cause the motion of cellular material’.
In defining the solutions of the modelling equations for pressure, nutrient concen-
tration and the radius of the outer boundary as the ‘basic state of motion’, perturba-
tions from this basic state were considered, with the main result that an aggregate
becomes less stable as its size increases, where a function of two model parameters
(relating to surface tension, external nutrient concentration, rate of necrotic volume
loss and rates of proliferation and nutrient consumption) determines whether or not
the aggregate arrives at a steady state before instability to asymmetric perturbations
prevails.

The work of Burton and Greenspan was soon extended byDeakin (1975).
Although these earlier authors had assumed that the oxygen consumption per unit
volume perunit time by the cells was constant, Deakin argued that this behaviour
contradicted the experimental evidence presented bySutherland and Durand
(1973) which demonstrated that the viable rim thickness decreases relatively
slowly following the onset of necrosis—an observation which was inconsistent
with previous model predictions. Appealing to the experimental findings ofFroese
(1962), Deakin then extended the formulations ofBurton (1966) andGreenspan
(1972, 1974) to incorporate an oxygen consumption which was proportional to
oxygen concentration within critical limits. Beyond an upper critical value of
oxygen concentration, oxygen consumption was considered a constant, while
necrosis occurred at a lower critical value below which no oxygen would be
consumed.

Whereas Deakin’s study was restricted to the effect of the non-uniformity of oxy-
gen consumption on the viable rim thickness,McElwain and Ponzo(1977) devel-
oped a model which investigated the effect of this non-uniformity on a tumour’s
growth rate, a model which—like Greenspan’s model (Greenspan, 1972)—produ-
ced three distinct phases in the tumour’s development. In the first phase, oxygen
concentration is above the upper critical value everywhere, so that all cells con-
sume oxygen at a uniform rate, giving rise to exponential growth. The growth
rate reduces in the second phase as oxygen concentration reduces in the central
region, with an associated decrease in the effective proliferation rate and a slow-
ing in the overall growth. In the final phase, the tumour reaches a viable dor-
mant state with an outer proliferating layer, an intermediate layer where overall
proliferation is reduced and an inner necrotic core. Significantly, the growth pat-
tern displayed a significant difference from that predicted by Greenspan’s model
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(Greenspan, 1972), where in some cases, the necrotic core was larger than the outer
tumour radius predicted by Greenspan.

Another important aspect ofSutherland and Durand’s (1973) experiments was
the observation that multicell spheroids could reach a dormant sizewithout cen-
tral necrosis—a result which seemed to suggest a cell loss mechanism other than
that postulated byGreenspan(1972). Further,Durand(1976) had detected only a
small number of labelled nuclei in the necrotic core of a spheroid which had under-
gone continuous labelling with tritiated thymidine, which clearly pointed to other
cell loss mechanisms even when central necrosis did occur.McElwain and Mor-
ris (1978) incorporated these experimental findings in a new mathematical model,
heeding the publications byKerr (1971) andKerr et al. (1972) whichdemonstrated
that apoptosis ‘can always be detected in malignant neoplasms’. In this way, pre-
vious models were extended to include a constant cell loss rate in the entire viable
region, with the consequence that a dormant state could be reached with or without
a central necrotic region. In considering apoptosis as a cell loss mechanism, the
model byMcElwain and Morris(1978) is an antecedent to much of the subsequent
mathematical literature relating to tumour development.

Various stochastic models of solid tumour growth also appeared in the literature
in parallel with the aforementioned publications. While these will not be reviewed
in detail in the present paper, it is important to note that ‘since random fluctuations
are fundamental to almost all biologic phenomena and particularly so in population
processes, the probabilistic or stochastic aspect of evolving populations is essential
whenever one considers populations whose size may assume small values. The
behaviour of small populations is predominantly statistical, and the random com-
ponent of the growth kinetics of a population, such as exhibited in the spontaneous
extinction in even supercritical growth, may indeed become more important than
the average behaviour’ (Wetteet al., 1974a). The interested reader is referred to the
papers byWetteet al. (1974a,b) for further insight into the early stochastic models
of solid tumour growth.

4. EARLY MODELS OF TUMOUR INVASION AND METASTASIS:
LIOTTA et al.

As explained byRuoslahti (1996), ‘metastasis, the spread of cancer to distant
sites in the body, is in fact what makes cancer so lethal. A surgeon can remove a
primary tumour relatively easily, but a cancer that has metastasized usually reaches
so many places that cure by surgery alone becomes impossible. For that rea-
son, metastasis and the invasion of normal tissue by cancer cells are the hall-
marks of malignancy’. In citing the examples of axillary lymph node removal
during mastectomy operations by both Marcus Aurelius Severinus in 1632 and
Fabricius Hildanus in 1646,Weiss(2000) argues that ‘before the basic relationship
of metastasis to the primary tumour was recognized, its clinical significance was
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appreciated’.Kleinerman and Liotta(1977) claim that the concept of haematoge-
nous tumour cell release as a consequence of vascular invasion was first proposed in
the 1800s, with Cruveilier’s work (Cruveilier, 1829) in associating primary tumour
invasion of local blood vessels with the development of remote metastases, and the
later work byLomer (1883) which recognised the role of circulating free tumour
cells in initiating metastases.

Although the study of solid tumour growth had enjoyed considerable popular-
ity among mathematicians, beginning in the early decades of the twentieth century,
few insights had been gleaned into ‘the factors that determine the onset, mechanism
and time course of tumour cell release’ (Kleinerman and Liotta, 1977). Indeed,
it was not until the 1970s that quantitative experimental work and mathematical
models were proposed to elucidate the dynamics of the metastatic process. An
experimental model was first developed byLiotta et al. (1974a) ‘to quantify some
of the major processes initiated by tumour transplantation and culminating in pul-
monary metastases’, by investigating the entry rate of tumour cells into the circu-
lation. The experiments featured a transplantable murine fibrosarcoma—chosen
chiefly because of its high haematogenous metastatic propensity and reproducible
biological behaviour—which was perfused with an oxygenated, cell-free medium,
enabling single tumour cells and tumour cell clumps to be counted from the venous
effluent. The study demonstrated the presence of tumour cells (both singly and in
clumps) in the perfusate shortly after the appearance of the tumour vascular net-
work, with the concentration of tumour cells increasing quite rapidly initially, and
later diminishing. In a later study,Liotta et al. (1976a) confirmed these observa-
tions, while highlighting the importance of clump size in the metastatic process,
since ‘larger clumps produce significantly more metastatic foci than do smaller
clumps matched for the number of cells’.

Several mathematical papers were published in the wake of these key exper-
imental studies.Saidelet al. (1976) proposed a lumped-parameter, determinis-
tic model of the haematogenous metastatic process from a solid tumour, which
provided a general theoretical framework for analysis and simulation. As a com-
partmental model, five sub-populations were considered—tumour cells, vascular
surfaces, invading tumour cells on the inner vessel surface, viable tumour cells
arrested in pulmonary vessels and pulmonary metastatic foci—thereby providing
an overall description of the metastatic process and allowing the relative impor-
tance and effective timing of the various steps to be assessed. Among the salient
features of the model were the assumption of a Michaelis–Menten form for the
processes of tumour cell proliferation and vessel surface formation, which presup-
poses a limit to both the level of tumour growth stimulation induced by more exten-
sive vascularisation [based on the observations byTannock(1968)] and the level of
induced vascular stimulation. Numerical solution of the resulting suite of five ordi-
nary differential equations yielded results which were in excellent agreement with
their experimental counterparts (Liotta et al., 1974a). In addition, the investiga-
tors considered the effects of various perturbations on the metastatic process—for
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example, tumour trauma by either external mechanical massage or by intratumour
injection of a saline bolus—to validate the model’s behaviour. It is noteworthy that
the study corroborated previous findings where showers of circulating tumour cells
appeared following tumour manipulation either during operation or in the course
of diagnostic procedures (Tyzzer, 1913), since the authors noted that ‘in our perfu-
sions tumour massage resulted in a shower of effluent tumour cells resulting in a
10–20-fold higher concentration over control levels’. [This phenomenon was also
observed in the authors’ previous experimental study (Liotta et al., 1974a), where
‘tumour massage (resulted in) at least a 10-fold rise over the initial concentration of
tumour cells, as well as a higher proportion of large clumps’.] Furthermore, one of
the most outstanding aspects of the mathematical model is its ability to distinguish
between various mechanisms by which tumour trauma influences the release of
circulating tumour cells, illustrating that trauma alone causes metastases to appear
earlier without increasing the total number of metastases, whereas when trauma
increases the dislodgment rateanddamages the vessel walls, ‘metastases increase
more rapidly and are always greater in number than in the unperturbed state’.

A stochastic model of metastases formation was then proposed byLiotta et al.
(1976b) to complement this mathematical model in order to distinguish amongst
tumour clump sizes and the random variation of the populations of clumps and
metastatic foci. The authors argued that while great quantities of tumour cells are
released into the circulation, less than 0.1% survive to form metastatic foci (Koike,
1964; Griffiths and Salsbury, 1965), making a stochastic description of metastases
formation an appropriate modelling framework. In this way, a non-homogeneous,
two-dimensional Markov process was intended to ‘provide a framework for pre-
dicting the development of metastatic foci from clumps in the pulmonary vessels
and the probability of no metastatic foci existing after tumour initiation’. Simula-
tion of the dynamics of the metastatic process was then accomplished by combining
the numerical solution of the deterministic model given bySaidelet al. (1976) with
the analytical stochastic model, giving good agreement with experimental data for
the mean and variance of macroscopic metastatic foci.

The mathematical framework bySaidelet al. (1976) wasalso extended byLiotta
et al. (1974c) in a diffusion model which attempted to elucidate experimental
data describing temporal changes in tumour cell and blood vessel radial distri-
butions in a host-tissue field transplanted with a fibrosarcoma. Coupled diffusion
equations with source and sink terms were proposed in spherical polar coordi-
nates (with spherical symmetry) to describe the density of both the tumour cells as
well as the surface area of tumour vessels as functions of time and radial position.
In the accompanying experiments, which built on the foundation outlined inLiotta
et al. (1974a), tumours were examined on a sequence of days after implantation to
determine the average radial distribution of tumour cells and tumour vessel surface
area as functions of time. Notwithstanding the emphasis on infiltrative, malig-
nant tumours, it may be argued that the underlying mathematical framework, in
considering tumour expansion and vessel migration as purely diffusion processes,
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is a little limited. Indeed, when very small values of the vascular proliferation
rate parameter are assumed, the model equations predict that blood vessels simply
diffuse passively into the tumour without any mitogenic stimulation. Neverthe-
less, in certain parameter regimes, the results of the mathematical model reflect the
overall experimental observations quite well, possessing the major trends found in
the experimental data, with a peak in the density of blood vessels occurring at the
tumour cell migration front, and the peak in tumour cell density moving away from
the tumour centre over time.

Liotta and co-workers also published some theoretical work on micrometastasis
therapy (Liotta et al., 1977) and quantitating tumour cell removal and tumour cell-
invasive capacity (Liotta and DeLisi, 1977).

5. MATHEMATICAL APPROACHES TO TUMOUR GROWTH IN THE 1980S:
ADAM AND MAGGELAKIS

The mathematical models ofAdam (1986, 1987a,b, 1989), Adam and Magge-
lakis (1989, 1990), Maggelakis and Adam(1990) andLandry et al. (1982) fea-
tured prominently in the mathematical literature pertaining to solid tumour growth
published in the 1980s.

Like Glass(1973) andShymko and Glass(1976), Adam (1986) hadnoted the
important experimental findings on the role of growth inhibitors in tumour develop-
ment published several decades earlier (Bullough, 1965; Bullough and Deol, 1971;
Weiss, 2000). While Glass had assumed that regulation of growth occurred by a
discontinuous switch mechanism for the control of mitotic activity with a spatially-
uniform production of inhibitor, Adam maintained that a spatially-dependent mito-
tic control function best reflected experimental observations and warranted fur-
ther theoretical study. Thus, it was the object of Adam’s study (Adam, 1986) to
examine the sensitivity of Glass’s model (Glass, 1973) to spatially non-uniform
inhibitor production, assuming a linearly-decreasing function of distance from the
tissue centre. To permit a direct comparison between the models, Adam adopted
the dimensionless variable,n, defined by Glass to delineate the conditions of stable
tumour growth (a variable which related to the critical concentration of inhibitor
for growth inhibition and the rates of inhibitor production and decay) as well as
much of the schematic nature of Glass’s formulation, with no consideration of a
necrotic region, and no identification of internal boundaries. In this respect, then,
the model represented an intermediate modelling framework between Glass’s first
model (Glass, 1973) and Greenspan’s one-dimensional model (Greenspan, 1974).

In contrast to the work ofGlass(1973), this new model predicted that for a given
value of the critical dimensionless variable,n0, a finite range of stable tissue sizes
exists, which increases monotonically with the value of the dimensionless variable.
Qualitatively, then, the model demonstrated the sensitivity of the growth of the
tissue to a non-uniform source of inhibitor.
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Recognising the importance of considering more realistic geometries to facilitate
comparison with relevant experimental studies, Adam soon extended this simple
model to investigate the roles of both non-uniform mitotic inhibition and geometry
on the stability of growth (Adam, 1987a). Three basic geometric configurations
were considered in order to provide a comparison with the work ofShymko and
Glass(1976): a thin cylindrical tube where inhibitor concentration depended only
on the axial distance from the centre of the tube, a thin cylindrical disc where
inhibitor concentration depended only on the radial distance from the centre of the
disc, and a sphere where the inhibitor concentration depended only on the radial
distance from the centre of the sphere. Notwithstanding the similarqualitative
results for the three configurations, each geometry gave rise to a distinct relation-
ship between the limiting size of the stable tissue and the dimensionless variable,n,
illustrating that geometry is also able to affect the stability of growth.

A comparison of these model predictions with the experimental results of
Folkman and Hochberg(1973) was then made in a subsequent paper byAdam
(1987b). Importantly, an additional parameter was added to the linear spatial
variation in mitotic inhibitor concentration to enable an inverse problem to be
solved for Folkman and Hochberg’s data, thereby yielding the necessary spatial
variation of growth inhibitor production to unify theory and experiment. Although
the combination of spherical geometry and a certain spatial variation in inhibitor
production gave rise to an excellent fit with the published data, Adam cautiously
noted that this fit did not prove the necessity of spatial variations in mitotic
control to explain such observations. It is particularly noteworthy that the series of
mathematical models proposed byAdam(1986, 1987a,b) thus far, in extending the
work of Glass(1973) andShymko and Glass(1976), did not incorporate a volume
loss mechanism such as necrosis, so that stability could only occur by complete
growth inhibition throughout the tissue—a somewhat incongruous notion in the
context of cancer.

Clearly, a consideration of the effects of a necrotic core would be an important
extension of these models. While necrosis was later considered in the final paper in
this series, it is essential to recognise that the necrotic core was simply incorporated
as a source of growth inhibition in this study (Adamand Maggelakis, 1989), rather
than representing a mechanism for volume loss. Nevertheless, the model enabled
an interesting comparison to be made with the earlier work ofGreenspan(1972)
in investigating two different sources of growth inhibition: inhibition by diffusion
of necrotic wastes, and inhibition via a by-product of processes occurring within
living cells. Following Greenspan’s approach, a spatially-uniform production was
assumed—an important departure from the formulation of the three earlier papers
in the series (Adam, 1986, 1987a,b). In other respects, however, the modelling
framework was consistent with the earlier papers, employing a decay term in the
diffusion equation for the concentration of inhibitor, which was solved, in this case,
in spherical geometry. This model illustrated that, in the case of inhibition due to
necrotic wastes, an increase in the relative width of the mitotic zone tended to
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compromise the stability of the tissue. In the case of inhibition by processes within
living cells, on the other hand, an increase in the relative width of the mitotic
zone was associated with an increase of the inhibitor production region, and was
therefore conducive to greater tissue stability.

Many of the remaining theoretical studies of tumour growth published in this
decade, such as those ofLandry et al. (1982) andAdam and Maggelakis(1990)
andMaggelakis and Adam(1990), tended to focus on tumour growth dynamics.

Landry et al. (1982) considered the geometric and physical characteristics
of multicellular spheroids in a mathematical model which attempted to relate
growth rate to easily-measurable parameters such as cell doubling time in mono-
layer, rate of cell shedding from the spheroid and the depth of the external
rim of proliferating cells—phenomena which were investigated in a preceding
experimental study (Landry et al., 1981). These authors were aware of recent
experimental observations which showed that spheroids expanded linearly with
time as the spheroids sequestered proliferating cells at the periphery (Yuhas and
Li , 1978; Yuhaset al., 1978), and later reached dormancy at a maximum diameter
(Folkman and Hochberg, 1973; Haji-Karim and Carlsson, 1978). While the model
did provide an explanation for the linear growth of multicellular spheroids, as well
as a theoretical basis for the experimentally-observed direct correlation between
the thickness of the proliferating rim and the spheroid growth rate (Yuhas and
Li , 1978), it predicted an infinite linear expansion and was unable to explain the
growth saturation of large spheroids. Acknowledging this shortcoming, the authors
compared and contrasted the two principal explanations for spheroid dormancy
existing in the literature at that time, namely the volume loss associated with the
disintegration of cellular debris in the necrotic core (Greenspan, 1972), and the
production of inhibitory factors (Glass, 1973; Shymko and Glass, 1976).

Maggelakis and Adam(1990), on the other hand, returned to a consideration
of non-uniform growth inhibition in a model which examined the growth rate of
a spherically-symmetric prevascular carcinoma when both nutrient consumption
and inhibitor production were spatially non-uniform. In this sense, the formu-
lation blended together many of the ideas first proposed byGreenspan(1972),
Deakin(1975) andMcElwain and Ponzo(1977), although in this case inhibitors
were produced only in the necrotic core. Further, based on the work ofMueller-
Klieser and Sutherland(1982) which examined the effects of toxic products from
the necrotic core on cellular oxygen consumption, an additional parameter was
introduced into the model to account for the effects of the inhibitor production
on nutrient consumption rate. This formulation bestowed the potential to adopt
a four-layered structure, with the development of the spheroid occurring within
four distinct phases. In the first phase, all cells could obtain sufficient nutrients,
allowing mitosis to proceed normally throughout the tissue. The second phase
commenced when nutrient concentration reduced sufficiently in the central region
to cause mitotis to decrease there, thereby beginning to slow the overall growth of
the spheroid. A two-layered structure prevailed during this phase, with an outer
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layer proliferating normally, and an inner layer in which proliferation was reduced.
The third phase was a further period of retarded growth where the structure com-
prised an additional layer of necrosis at the centre, which constituted a volume
loss mechanism. While this could give rise to dormancy, further growth ensued if
the retardation by necrotic volume loss and consumption decrease was insufficient,
giving rise to a fourth phase which could be characterised by either the aforemen-
tioned three-layered structure, or a four-layered structure comprising an additional
quiescent layer.

The results and implications of this mathematical model (Maggelakis and Adam,
1990) were then presented in a subsequent paper (Adam and Maggelakis, 1990),
elucidating the effects of different parameter values on various aspects of the
model such as growth rates and overall growth pattern, and distribution of inhibitor
concentration.

It is noted in closing that various models relating to oxygenation and radio-
sensitivity of solid tumours were published during this decade, such as the work of
Liapiset al. (1982), Arve and Liapis(1988), King et al. (1986a,b) andSchultz and
King (1987). In addition, some mathematical models of drug transport in tumours
such as the models given byJain and Wei(1977) andSwan(1981) were advanced
over a similar time-frame.

6. RECENT MATHEMATICAL APPROACHES TO TUMOUR GROWTH:
FROM 1990 TO THE PRESENT

The 1990s witnessed an explosion in the publication of mathematical papers on
solid tumour growth, with many more such papers appearing in this single decade
than in all the previous years combined. Not only did the study of both vascular and
avascular tumours (along with theirin vitro counterparts, the multicell spheroids)
continue, with the emergence of some new approaches, but various other experi-
mental investigations into tumour biology, such as the internalisation of labelled
cells in spheroids, became the subject of mathematical studies. Interesting math-
ematical contributions to the study of tumour invasion and metastasis were also
published during this period, in addition to publications in the inchoate areas of
tumour residual stresses and multiphase tumour mechanics.

The following section outlines a selection of such theoretical studies in order to
illustrate how this field of research has taken shape and how mathematical mod-
elling has continued to contribute to an enhanced understanding of tumour devel-
opment over recent years.

6.1. Cell migration in multicell spheroids and tumour cords. In response to the
emerging interest in the underlying mechanisms of cell migration,McElwain and
Pettet (1993) proposed a mathematical paradigm with which various key exper-
imental findings could be interpreted.Moore et al. (1984, 1985), for example,
had studied tumour cords—cylindrical ‘cuffs’ of tumour cells surrounding a blood
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vessel—using radioactive labelling techniques, and observed that cells tend to
migrate from the proximity of the blood vessel towards the outer extremity of the
cord, eventually entering the surrounding necrotic zone.Dorie et al. (1982, 1986)
studied these tumour growth kinetics further using multicell spheroid assays, con-
sidering the migration of both single cells labelled with tritiated thymidine and inert
polystyrene microspheres in two separate experiments. While both types of probe
adhered readily to the surface of the spheroids and gradually migrated inwards,
only the microspheres internalized completely, with no microspheres observed
in the peripheral region after several days. By contrast, a significant number of
labelled cells remained attached to the outer rim after this time, producing a dis-
tinctly bimodal distribution.

Since the experiments byDorie et al. (1982, 1986) attempted to clarify whether
the internalisation of labelled cells and microspheres was an active or passive pro-
cess, the model byMcElwain and Pettet(1993) incorporated both the passive inter-
nalisation due to non-uniform cell proliferation and cell death and the associated
pressure gradients, as well as the active migration of cells from a chemotactic
response to the gradient of nutrient concentration. While this theoretical framework
madepredictions which ostensibly reproduced the experimental results reported
by Dorie et al. (1982), it must be conceded that these results were dependent on
a number of controvertible modelling assumptions. In particular, it was assumed
that it was only the labelled cells which could migrate actively by chemotaxis, and
that these labelled cells do not proliferate. Furthermore, there was no experimental
evidence that cancer cells respond chemotactically to nutrient concentrations.

A later model given byThompson and Byrne(1999) addressed some of these
shortcomings, postulating that non-uniform cell proliferation and cell death of
the labelled cells were responsible for the different internalisation patterns, rather
than chemotaxis. Nevertheless, while the model predicted many of the qualita-
tive aspects of the observed migration of the probes, the limiting distribution of
labelled cells was spatially uniform rather than exhibiting the bimodal distribution
observed byDorie et al. (1982). In addition, the model required an initial distribu-
tion of labelled cells which was entirely internal to the tumour surface, rather than
adhering to the surface itself.

Pettet et al. (2001), on the other hand, combined many of the ideas proposed by
both McElwain and Pettet(1993) andThompson and Byrne(1999) to propose a
novel explanation for the migration of labelled probes in multicell spheroids. Influ-
enced by the experiments byHughes and McCulloch(1991) andPalkaet al. (1996)
which suggested that the chemotactic response of cells is dependent on cell-cycle
phase, these authors maintained that the quiescent cells alone would detect the
nutrient concentration gradient and attempt to migrate towards regions of higher
nutrient concentration, thereby competing for space with the proliferating cells
which continually drive cells towards the spheroid centre. Thus, cells in the quies-
cent state were assumed to be more ‘chemotactically active’ than their proliferat-
ing counterparts. This variation in chemotactic responses predicted a self-sorting
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of the cells, with quiescent cells dominating both the innermost region of tissue
where nutrient levels are low, as well as the tumour periphery as a result of chemo-
taxis. Proliferating cells, by contrast, were confined to a comparatively thin shell
close to the tumour periphery.

Bertuzzi and co-workers (Bertuzzi and Gandolfi, 2000; Bertuzzi et al., 2002,
2003) brought some fresh approaches to the study of cell migration through a con-
sideration of tumour cords. Various experimental investigations of tumour cords
have been conducted since the often-cited work ofTannock (1968), Hirst and
Denekamp(1979) andHirst et al. (1982, 1991), as well as the influential papers
by Mooreet al. (1983, 1984, 1985). Further, tumour cords represent an interest-
ing subject for theoretical investigation, since their simple cylindrical geometry
renders them a tractable subunit of a vascular tumour, which, as a whole, com-
prises a highly heterogeneous agglomeration of various cell types (both normal
and neoplastic, in various phases of the cell cycle) and necrotic regions, permeated
by a tortuous and highly fenestrated vasculature (Jain, 1987; David et al., 2002;
Ruoslahti, 2002).

Bertuzzi and Gandolfi(2000) developed a mathematical model for the cell kinet-
ics in a tumour cord to complement the cell migration data obtained byMooreet al.
(1984) from two experimental rat hepatomas. In view of the experimental data on
the expression of proliferation markers reported byDanovaet al. (1990) which
attests to the presence of quiescent cells in tumours, the model considered the pop-
ulation of viable tumour cells to comprise both proliferating and quiescent cells.
In addition, the age—or cell cycle phase—of the proliferating cells was taken into
account since this characteristic affects the update of radioactively-labelled DNA
precursors during the experimental labelling process. Any variability of phase tran-
sit times was neglected, so that all proliferating cells were assumed to undergo the
complete cycle in the same time. Moreover, the cells were assumed to behave as a
single fluid, with a single velocity field which was independent of cell age and pro-
liferating and quiescent status. In formulating a population model with an assumed
cell cycle structure, the model was based on the earlier theoretical work byGurtin
(1973) andGurtin and MacCamy(1977) on age-dependent diffusion of biologi-
cal populations. This modelling framework afforded excellent agreement with the
experimental data relating to the radial distribution of the labelling index (the frac-
tion of labelled cells after a pulse of tritiated thymidine) published byMooreet al.
(1984), except in the region adjacent to the blood vessel—a discrepancy the authors
argued was likely to be a consequence of assuming a constant cycle time.

Bertuzziet al. (2002) later incorporated a variable cell cycle length in a formula-
tion which built upon the foundation developed byKendall (1948) andTakahashi
(1966, 1968) to represent the cell cycle by a sequence of discrete compart-
ments of cell maturity corresponding to the phases G1 (gap 1), S (synthesis), G2
(gap 2) and M (mitosis). This new model predicted the time evolution of the spatial
distribution of the total fraction of labelled cells (LI) and the fraction of mitotic
labelled cells (FLM) in order to illuminate the experimental data reported by
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Hirst and Denekamp(1979) for theKHH mammary carcinoma. Since the rate of
progression through the cell cycle diminished with radial distance from the central
vessel because of the decreasing nutrient concentration, the authors maintained
that the kinetic differences between inner and outer zones could be masked by the
process of cell migration. Indeed, the model studied the effects of cell migration
by comparing the predictions relating to the time course of FLM with both the
experimental data and the previous analyses byTakahashi (1966, 1968) which
neglected spatial structure and cell migration. Although both mathematical models
give rise to reasonable correlation with the experimental results for the region
adjacent to the blood vessel, only the model given byBertuzziet al. (2002) yielded
an acceptable fit for the observed data in the outermost region of the cord. The
authors concluded that a correct analysis of radioactive labelling data from tumour
microregions requires the possible cell migration through the regions to be taken
into account.

While both the model given byBertuzzi and Gandolfi(2000) and thatgiven by
Bertuzzi et al. (2002) neglected the process of cell death within the tumour cord,
a subsequent model given byBertuzzi et al. (2003) considered the dynamics of
tumour cords under the action of a cytotoxic agent. This model incorporated both
a random cell death—either spontaneous or induced by the cytotoxic agent—and a
cell death which results from insufficient nutrient availability. Although dependent
upon many simplifying assumptions, the model was able to reproduce the qualita-
tive results reported byTannock and Howes(1973) andMooreet al. (1983) relating
to the response of tumour cords to a single dose of radiation. It also emphasized
the role of the degradation rate of dead cells on the macroscopic response of the
tumour mass.

6.2. Multiphase models. The mathematical theory of continua comprising two
or more interacting constituents, orphases, is well developed, with the combi-
nation of the seminal works ofTruesdell and Toupin(1960) and Truesdell and
Noll (1965) with the more recent publications by Bowen and co-workers (Bowen,
1976, 1980, 1982; Bowen and Wiese, 1969), Passman and co-workers (Passman
and Nunziato, 1984; Drewand Passman, 1999) andRajagopal and Tao(1995) pro-
viding a rigorous development of the theory and underlying modelling equations.
These approaches have enjoyed considerable success in various areas of indus-
trial applied mathematics over recent decades (Drew, 1971, 1976; Drew and Segel,
1971; Fowler, 1997; Fitt et al., 2002), and more recently, in an assortment of bio-
logical studies predominantly relating to soft tissues such as articular cartilage and
intervertebral discs (Mow et al., 1990a; Lai et al., 1991, 1993; Snijderset al., 1992;
Huyghe and Janssen, 1997).

By comparison, the application of multiphase techniques to biologicalgrowth
and the study of tumours is in its infancy, despite a number of important contribu-
tions appearing in the literature since the mid-1990s. These models depart from
the approaches used in most other biomechanical modelling insofar as the growth
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process itself is central to the problem at hand, and necessitates the inclusion of
interphase mass exchange in the suite of modelling equations.

Among the first multiphase models of tumour growth was that proposed by
Pleaseet al. (1998). Noting that the precise underlying determinants of regions
of coagulative necrosis had hitherto been neglected in mathematical models of
tumour growth, these authors advanced a very simple one-dimensional model of
the formation of necrotic regions in growing tumours by considering the role of
stresses within the tissue. Two incompressible phases were considered: tumour
cells, which were assumed to behave inviscidly, and extracellular water. The pro-
cess of cell proliferation was regulated by the concentration of oxygen, which was
assumed to diffuse rapidly into the tumour from its surroundings. Contrary to
many previous models (Greenspan, 1972), no surface tension was introduced to
the model, so that the processes of cell proliferation and cell death were the only
underlying mechanisms for cell movement. The authors postulated that the extra-
cellular fluid pressure must always be less than or equal to the cellular pressure in
a region of live cells, with cell rupture occurring in the event that the extracellular
fluid pressure was the greater of the two. In this way, the approach was novel inso-
far as the onset of necrosis was not dependent upon a critical oxygen concentration,
but on the stresses within the tumour.

This formulation was applied to the growth of a tumour in a test tube, with the
modelling equations tracking both the upper surface of the tumour, adjacent to
oxygen-rich water, and the boundary of the necrotic region. While the tumour
growth was initially exponential in this case, the onset of necrosis yielded a linear
growth of both the outer boundary of the tumour and the boundary of the necrotic
region, with the region of live cells maintaining a fixed thickness.

The authors soon extended this model to include surface tension and a spherical
geometry (Pleaseet al., 1999), and considered a slow, viscous flow of the cells in a
two-phase consolidation model. The assumption relating to the rupture of cells at
an elevated interstitial fluid pressure was also elaborated in this paper, which stated
that ‘any attempt to induce the extracellular matrix into a state of tension will then
result in adjacent cells rupturing as they are ripped from the extracellular matrix and
each other’, an assumption the authors believed to be valid for weakened anoxic
cells, if not for rapidly proliferating cells.

It is important to note that both this model (Pleaseet al., 1999) and its prede-
cessor (Pleaseet al., 1998) neglected the interphase drag forces in the equilibrium
equation.

By contrast, the full force balance equation—complete with pressure gradients
for each phase as well as hydrodynamic drag—was included in a subsequent
model byLandman and Please(2001). In addition, this latter paper was influenced
strongly by the experimental evidence reviewed byMueller-Klieser(2000), which
pointed to biological mechanisms other than oxygen diffusion and consumption
alone in creating a region of necrosis. Moreover, these authors believed the catas-
trophic rupture of cells due to a tensile intercellular stress to be a weak aspect of
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the previous models (Pleaseet al., 1998, 1999), preferring the concept of a necrotic
region identified by the appearance of voids between cells as neighbouring cells
die. Physical constraints on cell density and intercellular pressures were imposed
via a linear complementarity condition which allowed necrotic regions to form,
grow and shrink.

Assuming spherical symmetry, the model highlighted the role of surface tension
in both the possible formation of a necrotic region and the ability of the tumour
to reach a steady-state size. In particular, very small values of the coefficient of
surface tension prevented a steady state, with linear growth continuing indefinitely.
While moderate surface tension permitted a linearly stable steady state, containing
a necrotic region of fixed size, a surface tension in excess of a certain critical value
gave rise to a compacted tumour with no necrosis, whose steady-state size was
independent of the value of the surface tension coefficient.

This two-phase approach to the study of avascular tumour growth was revisited
by Brewardet al. (2002) using aone-dimensional cartesian geometry. While the
aqueous phase was assumed inviscid, the viscosity of the cellular phase was con-
sidered indicative of the degree of differentiation of the tumour cells, with poorly-
differentiated tissue characterised by a reduced intercellular cohesion and, there-
fore, a lower viscosity than their well-differentiated counterparts. Further, a key
feature of this model was the assumption that the pressure in the cellular phase dif-
fers from that in the extracellular water phase due to interactions between the cells.
Cells could attract each other, due to overlapping filopodia, or repel each other due
to the mechanical stress resulting from the deformation of the cell membrane.

A number of interesting predictions emanated from the ensuing solution and
analysis of the modelling equations. In the case where the short-range, attractive
intercellular forces were inactive, for example, a necrotic core developed, while the
live cells were relegated to a thin cortical region adjacent to the tumour periphery
which advanced as a travelling wave with an approximately constant propagation
speed. Moreover, increasing the viscosity of the cellular phase decreased the speed
of the advancing front, which was consistent with the idea that this viscosity corre-
lates with the degree of differentiation of the tumour cells. When the short-range,
attractive forces were active, on the other hand, the tumour arrived at a steady state
with no mass flux across the free surface, with the mass required for ongoing pro-
liferation coming entirely from the mass relinquished by dying cells.

An similar two-phase theory of avascular tumour growth was soon proposed
by Byrne et al. (in press). Whereas the former model given byBrewardet al.
(2002) considered interphase exchanges of momentum resulting only from interfa-
cial pressures and ‘Darcy-style’ drag terms, this new model also incorporated the
effect on the momentum equations of interphase mass exchange, thereby provid-
ing a correct statement of the equilibrium of forces for each phase. Importantly, the
development of the suite of modelling equations in both this model (Byrneet al.,
in press) and its predecessor (Brewardet al., 2002) constitutes a justification for
the description of cellular motion as adiffusion process [as in, for example, the
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models given bySherratt (1993, 2000) andGatenby and Gawlinski(1996)], since
a ‘cell-diffusion’ term was shown to be a consequence of interphase drag and the
interactions between cells, rather than the hitherto assumed random cell motion.

An extension of this work was later advanced byByrne andPreziosi(in press) in
a model which considered the stress distribution within the tumour, mechanical
interactions with the peritumoral region and stress-dependent cell proliferation.
Based on the theory of mixtures, a more detailed exposition of the conservation
equations was given in this paper in comparison with previous models (Breward
et al., 2002; Byrneet al., in press), appealing to the seminal work ofBowen(1976).
Ostensibly, the tumour comprised a solid cellular phase and a liquid phase, but
significantly, the constitutive equation deduced for the ‘solid’ phase was that of a
viscous fluid. Moreover, while the model defined the special case where viscous
contributions are absent as a ‘poroelastic limit’, this type of ‘poroelasticity’ is quite
distinct from the usual poroelastic concept of a solidmatrix permeated by a fluid.

Nevertheless, the model provided some interesting insights into the sensitivity
of the tumour’s dormant size to the effects of stress-dependent cell proliferation
and the application of external loads. While increases in the applied stress at the
outer boundary were associated with smaller equilibrium sizes, the sensitivity of
the process of cell proliferation to mechanical stresses determined whether or not
the tumour evolved to a nutrient-limited equilibrium size or a stress-limited equilib-
rium size. If the inhibitory effect of mechanical stress on cell proliferation reached
a critical value, the tumour could be eliminated.

The recent ‘solid-multiphase’ models given byPreziosi and Farina(2002) and
Araujo and McElwain(submitted-a) currently stand alone in the literature relating
to multiphase modelling of tumour growth by including a solid matrix amongst
the phases. While the emphasis of the former paper is a derivation of the cor-
rect statement of Darcy’s law for biological growth problems where interphase
mass exchange occurs, the latter model presents a full suite of modelling equations
which permit a consideration ofresidual stresses, a topic to be discussed in more
detail in the next section. Most significantly, the analysis in the paper byAraujo
and McElwain(submitted-a) points to a crucial phenomenological aspect of tissue
growth, illustrating that such a process must consist of a coordinated combination
of the swelling of the solid (cellular) phase due to the influx of extracellular fluid—
which is, in essence, the inverse of the consolidation concept of poroelasticity—
and the exchange of mass whereby extracellular fluid is incorporated into the cellu-
lar phase. This combination of processes necessitates the inclusion of an additional
constitutive postulate which relates interphase mass exchange to the solid matrix
expansion amongst the modelling equations in order to close the model.Ambrosi
and Preziosi(in press) have referred to the necessity to propose such postulates for
velocity or displacement fields as theclosure problem.

Multiphaseapproaches are also beginning to be applied to the study of vas-
cular tumours. The recent model byBrewardet al. (2003) is an extension of
these authors’ two-phase framework (Breward et al., 2002) to include blood
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vessels as a third phase. In determining explicitly the pressure exerted by the cells
on the blood vessels, an interesting feature of this one-dimensional model is its
ability to incorporate vascular collapse when this pressure exceeds a critical value,
with the consequence that the local delivery of oxygen is impaired. Such an out-
come clearly favours the formation of regions of coagulative necrosis. Mindful of
the insights into tumour blood vessel compression and decompression provided by
Boucher and Jain(1992) andGriffon-Etienneet al. (1999) respectively, the model
attempted to explain the recent observations byBrown et al. (2002) that in some
tumours an almost uniformly vascularised layer of proliferating cells envelops a
central necrotic core. Thus, it is interesting to compare this mathematical model
(Breward et al., 2003) with the recent theoretical studies of tumour vascular
collapse byAraujo and McElwain(submitted-b, 2003a,b) which employed the
principles of solid mechanics, as well as the early model given byMcElwainet al.
(1979) which determined pressure gradients by Darcy’s law.

The multiphase model of capsule formation in tumours byLubkin and Jackson
(2002) is also noteworthy, particularly since, along with the studies byBarr (1989)
andBarret al. (1988), it is among the very few attempts to uncover the underlying
mechanisms of this important aspect of tumour growth. Indeed, investigators such
asRobbinset al. (1984) andNg et al. (1992) have noted that the presence of a
capsule around tumour often suggests a favourable prognosis. In view of the evi-
dence reported byRitchie (1970) andBerenblum(1970) that tumours in lumens or
on the body surface do not form capsules, one of the foremost current explanations
for capsule formation asserts that peritumoral tissue is compressed into a capsule
by the expansion of the tumour. For this reason, the mathematical model given by
Lubkin and Jackson(2002) attempted to discriminate between the two mechanisms
of tumour expansion and host contraction. The tumour was assumed to comprise
two interpenetrating phases: an aqueous phase, and a more solid phase consisting
of the cells and the remaining, generally fibrous, extracellular components. Never-
theless,bothphases were assumed to behave as Stokes fluids over the time scale of
tumor growth, allowing stresses in the cell–fibre phase to dissipate by permanent
deformation. Among the other salient features of the model are the inclusion of
a contractility which may arise from a wound-healing response, and a solvation
stress, which is a measure of the affinity of one phase for another.

With this relatively simple description of the mechanics of a growing tumour,
the model demonstrated that ‘it is the expansion of the tumour, coupled with the
internal solvation pressure . . . which causes the formation of the capsule and the
associated elevated interstitial pressure of the tumour’. In addition, the model ‘con-
firmed the high and rising interstitial tumour pressures and the sharp and steepening
pressure gradient at its periphery as the tumour grows’, which had been observed
experimentally byBoucheret al. (1991) andGutmannet al. (1992). While con-
tractility was not necessary for the formation of a capsule, the model showed that
a host wound-healing response and the associated contractility would produce a
denser and better defined capsule, resulting in a much clearer tumour margin.
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6.3. Mechanical models and models of residual stress formation. Experimen-
tal evidence for the significance and implications of growth-induced stresses in
both normal and neoplastic tissues abounds in the literature.Fung (1991), for
example, noted the existence of residual stresses in living organs and highlighted
the importance of such stresses to physiological functions, asserting that ‘in a living
organism, the function of its organs depends on the levels of their internal stress
and strain’. Taber(1995) emphasizes that ‘residual stresses in biological tissues
have been observed for a long time’ although ‘the purpose of these stresses is not
well understood’.

In the context of cancer, stresses of various types distinguish neoplastic tissues
from their normal counterparts. Extensive experimental evidence attesting to the
elevated interstitial fluid pressure (Boucher and Jain, 1992) and oncotic pressure
(Stohreret al., 2000) in tumours—even very small tumours (Leuniget al., 1992)—
has been published by Jain and co-workers, for instance. This interstitial hyperten-
sion is thought to arise from the development of the neovasculature (Boucheret al.,
1996), owing predominantly to both the highly fenestrated nature of tumour blood
vessels (Hashizumeet al., 2000), the paucity of functional lymphatics (Netti et al.,
1995; Leu et al., 2000) and the elevated microvascular pressure linked to elevated
solid stresses within the tissue and the accompanying compression of blood vessels
(Griffon-Etienneet al., 1999). Importantly, interstitial hypertension is believed to
be partly responsible for the poor distribution of blood-borne therapeutic agents
and low blood flow rate in tumours (Znati et al., 1996).

A significant experimental publication relating to the role of stresses in tumour
development was that byHelmlinger et al. (1997). In these experiments, multi-
cell spheroids were grown in agarose matrices of varying stiffness so that stresses
gradually accumulated around the spheroids due to the progressive displacement
of the matrix by the growing aggregates. Among the salient results of the study
were the reversible inhibition of the spheroid growth, with an apparent thresh-
old stress required for significant growth inhibition, and a resumption of spheroid
growth following stress alleviation. In addition, while the net proliferation rate
of the cells was not affected by the surrounding stresses, the percentage of pro-
liferating and apoptotic cells both decreased, and cellular density increased with
increasing matrix stiffness. Moreover, spatial variations in the surrounding stress
field reversibly modulated the shape of the growing aggregates.

Various theoretical papers were published in tandem with these experimental
studies, such as the time-dependent model of interstitial fluid pressure using a
poroelastic description of the tumour byNetti et al. (1995). The model simulated
the effect of changes in microvascular pressure and tumour blood flow on inter-
stitial fluid pressure, with the excellent agreement between the model simulations
and experimental data suggesting that the model may be helpful for developing
strategies to improve high molecular weight drug delivery.

The experiments byHelmlinger et al. (1997) were modelled mathematically by
Chenet al. (2001), in an extension of the model byLandman and Please(2001)
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(see Section 6.2). Here, the surrounding agarose gel was assumed to be an
isotropic, porous, non-linear elastic medium characterised by a strain energy
function so that the stress induced in the gel by the tumour’s expansion could be
incorporated into the force balance equations, thereby linking it to the tumour’s
growth. The model exhibited two types of solution, namely a steady state with
or without a necrotic core, depending on the induced stresses. The model also
predicted that, for a given initial tumour radius, the onset of necrosis would be
delayed by increasing gel stiffness, thus reducing the tumour’s growth rate and
its saturation diameter. In this way, the model had qualitatively reproduced the
observations byHelmlinger et al. (1997).

A number of key experimental studies of tumour vascular collapse have also
appeared in the literature over the past four or five decades—another aspect
of tumour biology which is known to be detrimental to anti-cancer therapies
(Jain, 1994).

In the study byEddy and Casarett(1972), for example, the development of a
‘tissue growth pressure’ around a hamster malignant neurilemmoma in a restric-
tive transparent cheek pouch chamber was sufficient to compress the weak-walled
tumor capillary vessels. Further, in the experiments reported byGoldacre and Syl-
ven (1962), a harmless green dye was injected into the tail veins of mice with
transplanted tumours, giving rise to a deep green coloration of the whole animal
with the exception of the brain (due to the blood–brain barrier) and the central
regions of many of the solid tumours. The investigators concluded that tumours
often ‘contain substantial regions which cannot readily be reached by blood-borne
substances’ due to ‘some kind of (vascular) collapse’. Another important obser-
vation made byGoldacre and Sylven(1962) was that, for each type of tumour
used in their experiments, ‘the critical factor causing differences in the distribution
of dye was mainly the age and to some extent the size of the tumours’. While
young tumours were instantaneously coloured throughout with the green dye, the
development of green peripheries enclosing white centres was observed to occur
at a critical age, suggesting that vascular collapse occurs after a critical period of
growth.

It is most striking to compare Goldacre and Sylven’s report (Goldacre and Syl-
ven, 1962) with the more recent experiments byLeu et al. (2000) in which func-
tional lymphatics were detected only at the periphery of the tumours, the investiga-
tors arguing that the paucity of such vessels in the interior was due to the collapse
and destruction of the vessels.

From the point of view of theoretical investigation, it is important to recognize
that this distinctive spatial pattern of vascular collapse is strongly suggestive of
the presence ofresidual stresses, since an elevated hydrostatic pressure exerted by
the tumour’s surroundings, such as that in the experiments byHelmlinger et al.
(1997) would give rise to spatially uniform vascular compression. In addition,
Boucher and Jain(1992) assert that ‘the collapse of tumour blood vessels is proba-
bly induced by cancer cells growing in a relatively confined, noncompliant space’,
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since interstitial fluid pressure and microvascular pressure are approximately equal
within tumours.

Nevertheless, despite the numerous analytical studies of incompatible growth
in tissues by investigators such as Skalak and co-workers (Skalak, 1981; Skalak
et al., 1982, 1996), Rodriguezet al. (1994), Cowin (1996) and Van Dyke and
Hoger(2001), the mathematical modelling of residual stress development in grow-
ing tumours is a relatively recent endeavour.Shannon and Rubinsky(1992) pub-
lished a linear-elastic description of a spherically-symmetric tumour incorporating
different spatial distributions of growth strains which were modelled by analogy
with thermal expansion. This study yielded the crucial result that in a linear-elastic
description of a growing tissue with spherical geometry, any spatial variation in the
growth process induces residual stresses.Joneset al. (2000) also developed a math-
ematical model which explored the effect of a spatially-varying growth rate on the
distribution of residual stresses within a growing avascular tumour, but extended
the framework ofShannon and Rubinsky(1992) by accommodating the continuous
nature of the growth process rather than a given fixed growth strain distribution. As
a consequence of this measure, however, the model failed to predict a steady-state
stress distribution once the tumour had reached its nutrient-regulated equilibrium
size and therefore did not truly reflect the growth-induced stresses in an avascular
tumour or multicell spheroid. Indeed, the model predicted that the compressive
circumferential stresses in the peripheral region of an equilibrium-sized tumour
increased approximately linearly with time, with a concomitant linear increase in
the difference between the radial and circumferential stresses, the radial stresses
being fixed at the boundary itself. In this way, the model given byJoneset al.
(2000) highlighted the insufficiency of an elastic constitutive law to model contin-
uous volumetric expansion owing to its inability to exhibit stress relaxation.

MacArthur and Please(submitted) addressed this problem by proposing a vis-
coelastic model of residual stresses in a multicell spheroid—a natural modifica-
tion of the model given byJoneset al. (2000) in view of the substantial body
of experimental evidence pointing to the viscoelastic nature of biological tissues
(Mow et al., 1990b; Fung, 1993; Pioletti et al., 1998). These authors used this
modelling framework to extend the models of necrosis formation by Please and co-
workers (Pleaseet al., 1998, 1999; Landman and Please, 2001), allowing necrotic
regions to develop under conditions of adverse mechanical stress rather than in
regions of low nutrient concentrations.

Intriguingly, Araujoand McElwain(in press-a) were able to show that the stress-
relaxation characteristics of a viscoelastic constitutive law may be accommodated
in an elastic description of a growing tissue by allowing the growth process to
occuranisotropically. In associating stress relaxation with the growth term of the
constitutive equation rather than the stress response term, this modelling frame-
work heeded the experimental findings byHelmlinger et al. (1997) which demon-
strated the sensitivity of the directional characteristics of growth to the prevailing
stresses with cell aggregates developing as ellipsoids in an orthotropic stress field.
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In view of the fundamental role played by the spatial non-uniformity of the
growth process in inducing residual stresses,Araujo and McElwain(in press-b)
analysed the nature of the induced stresses for different distributions of growth
strain in a spherically-symmetric geometry. This analysis uncovered the impor-
tant result that a distribution of growth strains which decreases monotonically with
radius induces stresses which become progressively less compressive with radius,
with the circumferential component always less compressive than the radial com-
ponent. By contrast, a monotonically-increasing distribution of growth strains
induces stresses which become progressively more compressive with radius, with
the circumferential stress component always more compressive than the radial
component. Most importantly, the analysis illuminated the role of anisotropic
growth in relieving growth-induced stresses.

These authors later developed mathematical models ofGoldacre and Sylven’s
(1962) experiments (Araujo and McElwain, submitted-b, 2003a) based on the
insights gleaned in the former paper (Araujo and McElwain, in press-b), illustrat-
ing that a growth strain distribution which increases with distance from the tumour
surfacebeforecollapse, and a growth strain distribution with an internal maximum
at the vascular collapse frontfollowingvascular collapse could reproduce Goldacre
and Sylven’s observations. A subsequent paper (Araujo and McElwain, 2003b)
predicted that oscillations in the steady-state tumour radius could occur from the
combination of vascular collapse and the stress-relaxation characteristics of the
tissue.

Several other mathematical papers on residual stresses in tumours are notewor-
thy. Ambrosi and Mollica(2002) considered tumour growth using a combina-
tion of hyperelasticity and the notion of ‘multiple natural configurations’ origi-
nally proposed byRajagopal and Srinivasa(1998). Having developed a general
mathematical formulation, the authors considered some simple models, including
the spatially-uniform growth of a ductal carcinoma, and the spatially non-uniform
growth of a multicell spheroid. This modelling framework was pursued further in
a subsequent paper (Ambrosi and Mollica, 2003) which presented numerical sim-
ulations of the growth of a multicell spheroid, confirming that residual stresses are
generated because of the spatial non-uniformity of the growth process.

Lubarda and Hoger(2002) recently published a general constitutive theory of
stress-modulated growth of soft tissues, albeit with an emphasis on pseudo-elastic
tissues capable of large deformations, such as blood vessels and muscles. Using the
earlier work of Taber and co-workers (Taber and Eggers, 1996; Taber and Peruc-
chio, 2000) and Hoger and co-workers (Chenand Hoger, 2000; Hogeret al., sub-
mitted) as afoundation, this study pursued further the technique of a multiplica-
tive decomposition of the total deformation gradient into its elastic and growth
components.

6.4. New mathematical approaches to the study of tumour invasion and metas-
tasis. A keen interest in the important areas of tumour invasion and metastasis
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has persisted amongst mathematicians over recent years. Indeed, the possibilities
afforded by anti-invasion and anti-metastatic strategies in cancer treatment, as dis-
cussed byJiang and Mansel(1996), have bestowed an added preponderance to the
subject.

Orme and Chaplain(1996) continued the study of tumour growth and vascular-
isation commenced byLiotta et al. (1974c), contributing various new ideas and
modelling assumptions. Whereas the earlier work had proposed coupled diffusion
equations with source and sink terms to describe the density of tumour cells and
vessel surface areas, this more recent model also assumed that tumour cells react to
the presence of blood vessels in a similar manner to that of ‘taxis’, so that tumour
cells move up a gradient of capillary vessels. Moreover, an important novel aspect
of the model was the assumption that a necrotic core develops as a consequence of
the overcrowding of tumour cells and eventual collapse of blood vessels, in contrast
to the hypothesis byLiotta et al. (1974c) that necrosis occurs due to the inability
of the process of neovascularisation to keep pace with tumour cell proliferation.
Moreover, interactions between tumour cells and capillary vessels were considered
in more detail, yielding a somewhat more complicated partial differential equation
model. In addition to solving these equations by an algorithm which integrated
the system by the method of lines and Gear’s method, a travelling wave analy-
sis on a slightly simplified form of the equations was conducted, illustrating an
advancing front of invading tumour cells which leaves a compressed vasculature in
its wake.

The theoretical studies by Perumpanani and co-workers (Perumpanani et al.,
1996, 1999; Perumpanani and Byrne, 1999; Perumpanani and Norbury, 1999) have
made a significant contribution to the recent mathematical literature pertaining
to malignant invasion. These models pursued a more detailed phenomenological
understanding of tumour cell invasion by incorporating mathematical descriptions
of biological processes hitherto neglected from the majority of such studies. They
also contrasted strongly with previous mathematical models of cell motility which
focused predominantly on the role of angiogenesis.

Motivated by the significant experimental findings reported bySeftor et al.
(1992) andAznavoorianet al. (1990) on the role of integrins in tumour invasion,
Perumpanani et al. (1999) developed and analysed a mathematical model of
malignant invasion brought about by a combination of proteolysis and haptotaxis.
The spatial dynamics of invasive cells were modelled by a directed cell movement
up an extracellular gradient, while neglecting random cell motility on the basis
of the study byAznavoorian et al. (1990) which reported minimal chemokinetic
movement. Following the study byVaidya and Alexandro(1982), the proliferation
of tumour cells was incorporated using the logistic growth equation, while a
simple passive degradation described the dynamics of the extracellular matrix.
In addition, while the production of protease was assumed to depend on the
local concentrations of both tumour cells and extracellular matrix, its decay was
assumed to be linear with a specified half-life.
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A travelling wave analysis ensued, where the presence of a singular ‘barrier’ in
the phase plane could be identified, such that the phase paths had meaning only on
either side of the barrier. However, a particular point on this ‘wall’ of singularities
admitted a trajectory—a point originally described as a ‘hole in the wall’ byPettet
et al. (2000). Importantly, the model admitted a family of travelling waves depend-
ing on both the tissue concentration of connective tissue as well as the rate of decay
of the initial spatial profile of the invading cells. This model was later analysed fur-
ther byMarchantet al. (2000) who identified the equations as a reaction–advection
system, in contrast to the reaction–diffusion equation first considered byFisher
(1937) andKolmogorovet al. (1988)—the Fisher–KPP equation.Marchantet al.
(2000) showed that whereas the Fisher–KPP was parabolic, the model proposed by
Perumpananiet al. (1999) was hyperbolic, and may support shocks, or disconti-
nuities in the solution profiles, in addition to the smooth travelling wave solutions
presented in the earlier paper (Perumpananiet al., 1999). Hence, a previously
unnoticed family of solutions for malignant invasion was demonstrated. The study
of travelling wave solutions to such haptotaxis-dominated models of malignant
invasion has been pursued further in a subsequent paper byMarchantet al. (2001).

Another paper byPerumpananiet al. (1996) considered the repetitive cycling
of the processes of attachment, proteolysis and migration—the sequence of steps
referred to byStetler-Stevenson et al. (1993) as the three-step hypothesis—in a
mathematical model which explored the ways in which different combinations of
these processes are able to produce an invasive phenotype. Thus, the key model
variables comprised the concentrations of the invasive cells, non-invasive tumour
cells, normal cells, a generic extracellular matrix protein, a generic protease and
the product of proteolytic digestion of the extracellular matrix protein. The aim
of this one-dimensional continuum model of invasion was to explore the macro-
scopic implications of various biological hypotheses and to provide a theoretical
framework to make predictions about aspects of the system which would not lend
themselves to experimental investigation due to either cost or logistic difficulties.
Further, since invading cells behave as a front of cells travelling outwards as a
wave, the analytical focus of the paper was a study of the nature of this wave and
the changes which occur at the tumour/host interface as the wave progresses.

The authors used the results of this mathematical model to make several biolog-
ical inferences. In particular, it was argued that the movement of cells, as reflected
by the wave profile of the invasive cells as well as the speed of invasion, was oscil-
latory as a result of the simultaneous effects of a haptotactic gradient (encouraging
outward movement) and a concomitantly created chemotactic gradient (having a
retarding effect). In addition, the average speed of invasion could be determined
in terms of the invasive cell kinetics and the coefficient of haptotaxis. Further, the
absence of invasion under conditions of high protease expression was explained on
the basis of chemotactic gradients. The effects of the diffusivity of the protease on
an invading cell were also studied, illustrating that while a small increase in pro-
tease diffusivity is conducive to a dramatic increase in tumour invasiveness, a large
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increase discourages invasion due to the obliteration of extracellular matrix gradi-
ents which guide the cell movement.Perumpanani and Norbury(1999) later con-
sidered this mathematical model further, with a particular emphasis on the numer-
ical behaviour of the modelling equations.

Both theoretical and experimental methods were combined in a publication by
Perumpanani and Byrne(1999), which illustrated the power of mathematical mod-
elling to provide new and valuable insights into important biological phenomena.
In view of the well-documented proclivity of certain primary tumours to metasta-
size and establish new colonies in specific organs [such as the tendency of colonic
carcinomas to spread to the liver (Kuo et al., 1995) while breast carcinomas tend to
spread to the axillary lymph nodes (Van Lanckeret al., 1995)], this study attempted
to establish whether regional variations in extracellular matrix concentration could
contribute to these invasion patterns by exerting a local selection pressure on the
invasive cells. For the experimental component of the study, an invasion assay
was used to assess the invasiveness of HT1080 tumour cells migrating through a
collagen gel, demonstrating abiphasicrelationship between invasiveness and col-
lagen concentration, with maximum invasiveness at intermediate concentrations of
collagen and diminished invasiveness for higher and lower concentrations. Inter-
estingly, the mathematical model developed to study this behaviour yielded the
prediction that tumour cell proliferation may also be related in a biphasic manner
to collagen concentration, a hypothesis which was then substantiated by a combi-
nation of collagen gel invasion and proliferation assays. Moreover, further analysis
of the mathematical model suggested that the biphasic dependence of the penetra-
tion depth and proliferation of tumour cells on collagen gel concentration may be
a consequence of interactions between haptotaxis and cell proliferation.

Over a similar time-frame as the aforementioned studies were published,
Gatenby (1991, 1995a,b, 1996a,b), Gatenby and Gawlinski(1996, 2001) and
Webbet al. (1999a,b) advanced a number of impressive mathematical papers on
tumour invasion which contrasted quite markedly with the former publications,
investigating alternative mechanistic bases for experimentally-observed behaviour.
Since the initial studies byGatenby (1991, 1995a, 1996b) appealed to methods
from population biology in treating tumour cells as an invading species in an
otherwise stable ‘multicellular ecological domain’, it was demonstrated that
‘tumour populations, as with any invading population in nature, must directly
perturb the environment in a way that facilitates its growth while inhibiting those
in the original community’ (Gatenby and Gawlinski, 2003). Hence, several acid-
mediated tumour invasion models ensued (Gatenby, 1995b, 1996a; Gatenby and
Gawlinski, 1996; Webbet al., 1999a,b) as a result of the search for tumour-induced
perturbations in the tissue environment.

Various experimental observations contributed to this new explanation of tumour
invasion. Volpe (1988) and Clarkeet al. (1988), for instance, had reported evi-
dence that a consistent cellular dynamic in tumours is an evolution away from the
differentiated state of the tissue of origin toward one that is more primitive.
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Furthermore, Warburg (1930) had observed that an increase in glycolytic
metabolism accompanied this evolution despite a concomitant 19-fold decrease
in energy production.Gatenby and Gawlinski(1996) held that successful tumour
invasion was linked to this inefficiency, postulating that ‘transformation-induced
reversion of neoplastic tissue to primitive glycolytic metabolic pathways, with
resultant increased acid production and the diffusion of that acid into surrounding
healthy tissue, creates a peritumoral microenvironment in which tumour cells
survive and proliferate, whereas normal cells are unable to remain viable’. A
mathematical framework for this acid mediation hypothesis was proposed, giving
rise to a system of three coupled reaction–diffusion equations which described the
densities of the normal and tumour tissues in addition to the excess concentration
of H+ ions—a measure of the tissue’s acidity.

The raw data presented byMartin and Jain(1994) relating to in vivo intersti-
tial pH profiles for the VX2 rabbit carcinoma and its surrounding normal tissue
was then analysed using the model, demonstrating that the data was consistent
with the presence and approximate range of the pH gradient extending into per-
itumoral tissue as predicted by the model. The predicted growth rates of both
benign and malignant tumours also compared favourably with clinical observa-
tions. In addition, the model highlighted the roles of various biological parameters
in the clinically-observed ‘crossover behaviour’ between non-invasive growth and
the development of an invasive phenotype. Most significantly, the mathematical
model predicted a number of interfacial structures, including a previously unrecog-
nized hypocellular interstitial gap in some malignancies—a gap which the authors
demonstrated throughin vitro experiments.

Several other interesting contributions to the mathematical study of invasion and
metastasis are noted in closing.Chaplain and Sleeman(1993) devised an interest-
ing theory of tumour invasion by supposing that the degree of differentiation of a
tumour may be characterised mathematically by a strain energy function, thereby
linking the potential for invasion and metastasis to the constitutive nature of the
tissue. Here, the cortical layer of proliferating cells enclosing the necrotic core was
modelled as a balloon membrane, with the gross internal forces taken into account
by an inflationary pressure. This approach afforded an emphasis on the activity
of the layer of proliferating cells at the tumour periphery, which may invade the
surrounding host tissue. Moreover, the bifurcation from spherical symmetry to an
aspherical equilibrium, which may be associated with the onset of local invasion,
was considered, with the criterion for bifurcation also expressed in terms of a strain
energy function.

A later paper bySleeman and Nimmo(1998) extended the model of fluid trans-
port in vascularized tumours byJain and Baxter(1998) to enable a consideration of
invasion and metastasis. Introducing a pressure-curvature condition to the tumour
periphery, a perturbation analysis was conducted to show how small deviations
from spherical symmetry could enhance asymmetric growth, enabling the tumour
to invade and metastasize.
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6.5. Further models of avascular tumours and multicell spheroids. The study
of avascular tumours and multicell spheroids continues to represent a substantial
proportion of all mathematical models devoted to solid tumour growth.

Some recent studies have resumed the study of growth inhibitory factors com-
menced byShymko and Glass(1976) andAdam(1986, 1987a,b). Chaplain et al.
(1994), for example, had noted Loewenstein’s observations (Loewenstein, 1981)
relating to the loss of coupling between tumour cells and proposed that the dif-
fusion of growth inhibitory factors between cells may not be constant. There-
fore, in contrast to earlier models (Adam, 1986, 1987a,b; Adamand Maggelakis,
1989) which incorporated only non-linearproduction of mitotic inhibitors, this
new model (Chaplain et al., 1994) introduced a non-linear, spatially-dependent
diffusion coefficient to describe the diffusion of a growth inhibitory factor. In addi-
tion, both uniform inhibitor production, as well as the non-linear production term
proposed byBritton and Chaplain(1992) andChaplain and Britton(1993) were
considered in this framework. The model demonstrated that the introduction of
a non-linear, spatially-dependent diffusion coefficient was sufficient to produce a
profile of growth inhibitor concentration which was compatible with experimen-
tal findings. Furthermore, since the combination of non-linear diffusion and a
non-linear production term was also able to reflect experimental observations, the
authors argued that, from a mathematical point of view, it is not possible to dis-
tinguish between the effects of non-linear diffusion and non-linear production of
inhibitors.

The recent interest in the role of apoptosis (that is, programmed cell death) in
tumour growth has also spawned several novel mathematical models. New anti-
tumour strategies which focus on apoptosis are emerging (Hickmanet al., 1994;
Darzynkiewicz, 1995; Kastanet al., 1995; Thames et al., 1996) since, in some
cases, a lack of cell death is responsible for neoplastic growth.Byrne andChaplain
(1996a) considered both apoptosis and necrosis as distinct cell loss mechanisms in
a model which studied the effects of nutrients and inhibitors on the existence and
stability of time-independent solutions for a multicell spheroid.

Experimental evidence attesting to the relationship between cell proliferation and
apoptosis (Lynch et al., 1986; Raff, 1992; Levine et al., 1995), where increases
in both rates have been observed in some tumours, motivatedByrne (1997a) to
develop a mathematical model which studied the effect of time delays on the
dynamics of avascular tumour growth. Two types of time delay in the net cell
proliferation rate were considered. The first type of delay was regulated by the cell
itself (autocrine control) and represented the time taken for the cells to undergo
mitosis. The second type of delay, on the other hand, was influenced by neigh-
bouring cells (paracrine control) and represented the time for cells to upregulate
the production rate of a particular growth factor and for the growth factor to modify
the rate of apoptotic cell loss. Because of these time delays, the tumour’s evolu-
tion depended not only on its composition at a particular instant, but also on its
composition at some earlier time.
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Thenumerical solution of the modelling equations and the accompanying asymp-
totic analysis demonstrated that the manner in which time delays were integrated
into the system was crucial to the tumour’s evolution. While the first type of delay
did not affect the tumour’s limiting behaviour, the second type of delay could dra-
matically alter the tumour’s growth dynamics. Indeed, beyond a certain critical
delay time, radially-symmetric steady-state solutions were destabilized, with the
tumour volume oscillating in a manner similar to the observations byLynchet al.
(1986) on cell number fluctuations.

A subsequent model byByrne andGourley (1997) continued the study of the
relationship between cell proliferation and apoptosis through a consideration of
the internal production of growth factors which regulate apoptotic activity. Here, a
growth factor was first produced in an inactive form during cell proliferation, and
later activated upon binding to a tumour cell. The inclusion of growth factors in
this manner rendered the tumourhistory dependent, so thatits evolution depended
on its structure at a given time as well as its structure over arangeof earlier times
[rather than at a particular earlier time as in the model given byByrne (1997a)].
Moreover, growth factors which enhanced apoptosis did not alter the qualitative
behaviour of the tumour, while growth factors which suppressed apoptosis could
induce asymmetric pulsing of the tumour radius.

The series of papers byWard and King (1997, 1999a,b, 2000) have made a sig-
nificant contribution to the recent literature on avascular tumour growth, and are
cited often. These are multi-species models, which, despite considering multi-
ple tissue constituents, are quite distinct from the models presented inSection 6.2
since they do not appeal to the theory of porous media and theory of mixtures. [For
this reason, they diverge quite markedly from the models byPleaseet al. (1998,
1999) andLandman and Please(2001) in postulating a non-mechanical basis for
the formation of necrotic regions.] The first paper byWard and King (1997) pre-
sented a system of non-linear partial differential equations as a continuum model
which assumed cells to be either living or dead (depending on the concentration of
a generic nutrient), the aim being to make predictions about tumour heterogeneity
and growth, without making anya priori assumptions about the spatial structure of
the tumour. A velocity field developed as a consequence of local volume changes
due to cell proliferation and cell death, where, in contrast to previous models, dying
cells contracted at a rate which depends on the availability of nutrients. Thus, cell
death was a gradual process. Another interesting aspect of the model was its use of
a generalized Michaelis–Menten form for the rate constants for cell proliferation
and death, building on previous methods to model cell kinetics by investigators
such asLin (1976) andMcElwain (1978).

Notwithstanding its inability to model growth saturation since the products
of cell death remained within the spheroid without decaying or escaping, this
formulation predicted an early exponential growth phase followed by linear
growth, corresponding to experimental observations in the intermediate phase of
spheroid growth. An additional interesting prediction peculiar to this modelling
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framework was the existence of two phases of growth retardation following the
exponential growth. The authors used asymptotic analysis to illustrate that the
first of these phases was a consequence of nutrient diffusion limitations, with the
second retardation coinciding with the formation of a necrotic region. In addition,
well-defined tumour regions were predicted, with a distinct viable rim and a
necrotic core. Thus, the analysis in this paper offers insights into the time scales of
the various stages of growth and the length scales of the various tumour regions.

An extension to the model was soon proposed (Ward and King, 1999a) in order
to permit a consideration of growth saturation by incorporating a necrotic volume
loss. The model represents an interesting extension to models such as those by
Greenspan(1972), McElwain and Morris(1978) andByrne andChaplain (1995,
1996a, 1998) where cell death by either apoptosis or necrosis, or a combination
of the two, was associated with the contraction of the entire cell volume.Ward
and King(1999a), however, considered only necrotic cell death and proposed two
distinct mechanisms for the removal of the necrotic debris: leakage and consump-
tion by neighbouring cells. The latter mechanism was postulated on the basis of
experimental observations of cells’ consuming neighbouring dead cells (having
undergone apoptosis), as reported byKerr et al. (1987). Depending on the choice
of parameter regime, this measure enabled the long-time solutions to exhibit either
travelling waves or growth saturation.

The effects of mitotic inhibitors were investigated in a subsequent model exten-
sion, in which it was proposed that during necrotic cell death, a cell dissoci-
ates into two different species: basic cellular material such proteins and DNA
which may be used by living cells for proliferation and growth, and high molec-
ular weight material which cannot be used directly by other cells and may act as
a mitotic inhibitor. Indeed, several growth inhibitory proteins originating in the
necrotic core had been identified by a number of investigators includingFreyer
et al. (1988), Harelet al. (1984), Iwataet al. (1985) andLevineet al. (1995), hav-
ing molecular massesO(100) times that of glucose. While incorporating mitotic
inhibition into the model did not alter the qualitative development of the tumour,
it did have a pronounced effect on quantitative outcomes such as increasing the
propensity for the spheroid to arrive at a steady state (rather than exhibit travel-
ling wave solutions) and causing a reduction in the saturation size. Moreover, the
results demonstrated that the inhibitor could act either directly by reducing the
mitotic rate, or indirectly by occupying space, thereby reducing the availability of
cellular material.

Cell shedding, the process by which cells detach from the surface of a multicell
spheroid, became the focus of a further extension of these models. It is noteworthy
that this model, along with those byLandryet al. (1982) andCasciariet al. (1984),
is one of the very few theoretical studies to consider this phenomenon. Cell shed-
ding was introduced to the modelling equations by allowing the rate of change of
the coordinate of the tumour surface to differ from the surface velocity. More-
over, in viewof the observation byLandry et al. (1981) that cells are more prone
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to detachment during mitosis, the model related the rate of cell shedding to the
mitotic rate at the spheroid surface. Including the process of cell shedding in this
way was shown to expand significantly the range of parameters for which growth
saturation occurred.

Various other mathematical models of avascular tumours are noted in closing.
A number of recent models, such as those byByrne andChaplain (1996b) and
Byrne(1997b, 1999b), for example, have continued the work ofGreenspan(1976)
on the spherical stability of cell aggregates. A later model proposed byByrne
and Chaplain(1997), on the other hand, comprised some very novel approaches
and constituted a quite general formulation for the growth of multicell spheroids.
While the model was, in essence, based on the work ofGreenspan(1976) in con-
sidering the tumour as an incompressible fluid with local cell proliferation and
death generating pressure gradients which govern cell motion, these authors made
no a priori assumptions about the tumour’s spatial structure. Moreover, a key
aspect of the model was the assumption that the nutrient concentration satisfied
the Gibbs–Thompson relation on the tumour boundary, a relation which states that
‘the nutrient concentration at a point on the tumour boundary is less than the exter-
nal concentration by a factor which is proportional to the local curvature there’
(Byrne andChaplain, 1997). This feature was intended to reflect the experimental
evidence reported byMiyasaka(1995) andNagleet al. (1994) that cells require
energy on the periphery to generate sufficient adhesive forces to maintain a com-
pact tumour mass. [Recall thatGreenspan(1976), by contrast, had appealed to a
simpler concept of surface tension in order to ensure tumour compactness.] The
balance between the internal expansive force due to cell proliferation and the adhe-
sive forces between cells on the tumour boundary then enabled the tumour’s poten-
tial for invasion to be assessed. This formulation gave rise to a number of free
boundaries, explicitly defining the outer boundary, and implicitly defining various
internal surfaces (such as the boundary of the necrotic core) as functions of nutrient
concentration.

Sherratt and Chaplain(2001) have also developed a novel mathematical approach
to the study of avascular tumours, considering continuum densities of proliferat-
ing, quiescent and necrotic cells, together with a generic nutrient or growth factor.
This framework predicted the development of the characteristic layered structure
of a proliferating rim, an underlying quiescent layer and a necrotic core with-
out making anya priori assumptions about the spatial structure of the tumour.
In this sense, the model extended aspects of the framework developed byWard
and King(1997, 1999a) to consider quiescence. The model also incorporated cell
movement based on the phenomenon described byAbercrombie(1970) as ‘contact
inhibition of migration’, where the presence of one cell type limits the movement
of another cell type—a measure which was shown to reduce the rate of tumour
growth. [Note that this contact inhibition had been modelled previously bySherratt
(1990) in a very simple competition model.] An additional novel feature of the
model was that the thin, approximately disc-shaped tumour could be supplied with
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nutrients from underlying tissue, a situation which would arise in the context of
a tumour growing within an epithelium. The numerical solutions and accompa-
nying analysis illustrated that tumour structure could be altered significantly by
this aspect.

The recent model of the early growth of a ductal carcinomain situ of the breast
by Franks et al. (2003) represents an interesting contrast with the other theoreti-
cal studies outlined in this section, applying many of the approaches developed by
Ward and King (1997) to the cylindrically-symmetric geometry of the breast duct.
The tumour’s growth was largely determined by nutrient availability, with growth
occurring preferentially down the duct, being the direction of least resistance. In
addition, cell movement was described by a Stokes flow constitutive relation. Thus,
a system of non-linear partial differential equations was proposed to describe the
live and dead tumour cell concentrations, the concentration of fluid within the duct
(lumen), nutrient concentration, local velocity and pressure. This modelling frame-
work was then used to study the effects of the tissue viscosity on the shape of the
tumour boundary, as well as the extent to which the cells adhere to the duct wall.

6.6. Further models of vascular tumours. A number of noteworthy attempts
have been made to model vascular tumour growth on both the microscale and the
macroscale, albeit considerably fewer in number when compared with models of
avascular tumour growth.

Byrne andChaplain (1995) developed a model of non-necrotic tumour growth
which studied the roles of nutrients and growth-inhibitory factors being supplied
to tumour cells by both diffusion and blood–tissue transfer via the vasculature.
This was an important contribution to the theoretical study of growth inhibition
since, in comparison with the earlier work ofAdam (1986, 1987a,b) andAdam
and Maggelakis(1990), the consideration ofin vivo growth permitted an investi-
gation of a much wider range of inhibitory behaviour. The model also departed
from earlier work by including apoptosis in the mass conservation equation, being
one of only two mathematical models to have considered this cell loss mecha-
nism at that time [the first being the model byMcElwain and Morris(1978)].
A further distinguishing feature of this work was a consideration of the variations
in dependent variables over both the timescale of nutrient diffusion and the growth
timescale, affording insight into the previously unstudied transient behaviour of
tumours. [It is noted that this model was later analysed byCui (2002) andCui and
Friedman(2000).]

Hahnfeldt et al. (1999), on the other hand, developed a quantitative theory of
vascular tumour growth and treatment response under angiogenic stimulator and
inhibitor control by investigating the effects of the angiogenic inhibitors endostatin,
angiostatin and TNP-470 on tumour growth dynamics. In this way, a theoretical
basis was proposed ‘for both describing tumour development and for assessing
antiangiogenic treatment alternatives, alone or in combination with conventional
therapies’. The results attested to the ‘ubiquitous tendency of tumours to exhibit
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a growth slowdown with a possible asymptotic approach to a final tumour size,
or ‘set point” which ‘may be understood in terms of the net angiogenic influence
upon the tumour becoming more inhibitory over time, independent of any tumour
cell-specific details’. In addition, the analysis offered a ranking of the relative
effectiveness of the inhibitors.

In contrast to many other studies,Brewardet al. (2003) proposed a model of
the microscalewithin a vascular tumour, considering the interactions between a
compliant vessel and the live and dead tumour cells in its vicinity. Here, the oxygen
levels in the tumor tissue depended on the spacing of the blood vessels as well as
their thickness, with larger vessels supplying greater levels of oxygen. Local cell
proliferation and cell death gave rise to pressure gradients which, in turn, caused
the blood vessel to open or close. Since the closing of a blood vessel impeded the
supply of oxygen, the oxygen tension could vary in response to changes in the local
densities of tumour cells.

A poroelastic description of a vascular tumour was developed byNetti et al.
(1997) in a model which differs from those discussed inSection 6.2since the
growth process itself was not considered. Rather, microscopic and macroscopic
descriptions of transvascular and interstitial fluid movement were united in this
model, with a view to providing a theoretical tool to complement experimental
investigations of macromolecular transport (or drug delivery) in solid tumours.
Indeed, the study of drug transport in tumours is a significant area of mathemat-
ical modelling in itself and will not be discussed in further detail in the present
review. The interested reader is referred to the papers byJackson(2002), Jackson
and Byrne(2000), Baxterand Jain(1989, 1990, 1991, 1996), Netti et al. (1995),
McDougallet al. (2002), Tracqui et al. (1995), Adamand Panetta(1995), Panetta
and Adam(1995), Wein et al. (2002) andWard and King (2003) for somefurther
examples.

Cristini et al. (2003) have recently published a novel formulation of the classical
models byGreenspan(1976), McElwain and Morris(1978), Byrne (1997b) and
Byrne andChaplain (1996b), studying vascular tumour growth in the non-linear
regime using boundary-integral simulations. Three growth regimes were consid-
ered, corresponding to low, moderate and high vascularisation. An interesting
outcome of this modelling framework was the prediction that highly-vascularized
tumours, in spite of their unbounded growth, would maintain a compact shape
without invasive fingering, a prediction corroborated by the recent experimental
observations ofin vivo tumour growth byNor et al. (2001).

The study of a vascularized spherical carcinoma byAdamand Noren(2002) is
noted in closing, in which the authors analyse the solutions of the non-linear time-
independent diffusion equation arising from a model of a spherically-symmetric
vascularized carcinoma with a central necrotic core.

6.7. Various other mathematical models of tumour growth. In addition to
the models outlined in previous sections, some recent mathematical papers have
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encompassed a number of stages of tumour development, including the avascular
and vascular phases, the intermediate period of angiogenesis, and eventual local
invasion and metastasis.

The review byChaplain (1996), for example, discusses these various stages of
tumour growth by presenting a variety of mathematical ideas previously published
by Chaplain and co-workers (Chaplain, 1993; Chaplain et al., 1994). Although
many of these modelling approaches have been discussed elsewhere in the present
review, Chaplain juxtaposes these models in order to present a unified treatment of
the entire process of tumour development.

In a similar manner,Chaplain and Preziosi(in press) present a general discussion
of a number of modelling frameworks, including lattice schemes and continuum
models comprising either a single phase or multiple phases, for the study of tumour
growth at the macroscopic level. Summaries of various aspects of the models given
by De Angelis and Preziosi(2000), Anderson and Chaplain(1998) andAnderson
et al. (2000) are presented to give an overview of the subjects of avascular tumour
growth, angiogenesis, invasion and tumour–host interactions. The model given by
De Angelis and Preziosi (2000) is particularly noteworthy since it describes the
continuous evolution of a tumour from the avascular stage to the vascular stage via
the process of angiogenesis.

The study of tumour interactions with the immune system has also attracted an
abundance of mathematical models. An overview of this field of research has
recently been published byAdam and Bellomo(1997), who present an extensive
review of the associated mathematical literature.

7. CONCLUDING REMARKS AND OPEN PROBLEMS

Cancer is a leading cause of premature death in the Western World, and its study
dates back to antiquity. This short treatise has presented an overview of the study of
solid tumour growth with an emphasis on mathematical modelling, beginning with
the early work on diffusion in tissues byHill (1928) and culminating in the most
recent models. The astonishing variety of theoretical approaches—from diffusion
models of avascular tumours to multiphase models of vascular tumours, from trav-
elling wave analysis of tumour invasion to models of cell migration by chemotaxis
in multicell spheroids, from multi-species fluid models to single phase viscoelas-
tic models, from stochastic models of metastases formation to multiphase models
of necrosis formation—attest to the incredible complexities of the biological and
physiological processes underlying solid tumour growth and invasion at molecu-
lar, cellular and macroscopic levels. Importantly, this overview has interwoven
these theoretical studies with the relevant experimental investigations, illustrating
the crucial relationship between these different approaches, demonstrating how the
field of cancer research has evolved through their interactions and elucidating the
origins of our current understanding of the disease.
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The majority of mathematical models of solid tumour growth seem to have
appeared in the literature since 1990, although many of these have extended the
basic frameworks developed by investigators such asGreenspan(1972, 1974,
1976), Burton (1966) and McElwain and co-workers (McElwainand Ponzo, 1977;
McElwain and Morris, 1978) in previous decades. Mathematical models continue
to appear in the literature at an extraordinary rate. Indeed, the lacunae in our
understanding of tumour growth and invasion necessitate a sustained input by
mathematicians into current and future investigations, and provide the impetus
for a continuing stream of new projects in mathematical oncology and ongoing
collaborations between mathematicians and experimentalists. As explained by
Gatenby and Gawlinski(2003), ‘it is clear from centuries of experience in the
physical sciences that the complex dynamics of systems dominated by non-linear
phenomena such as carcinogenesis cannot be determined by intuition and ver-
bal reasoning alone. Rather, they must be computed through interdisciplinary,
interactive research in which mathematical models, informed by extant data
and continuously revised by new information, guide experimental design and
interpretation’.

For this reason the relationship between theory and experiment is a crucial one,
and one which will guide the progress of cancer research in the future.

At the present time, the open problems in the study of tumour development are
legion. For instance, an understanding of the phenomenological determinants of
cell migration (discussed inSection 6.1), and whether it is an active or passive pro-
cess, is lacking. Furthermore, the question of the nature of tumour cell migration
is central to a number of consequential phenomena such as tumour invasion. If
cell migration should prove a passive process, then invasion models such as those
of Gatenby (1995b, 1996a), Gatenby and Gawlinski(1996, 2001, 2003) andWebb
et al. (1999a,b) would seem the more plausible and warrant further development
and study. If migration be an active process, on the other hand, a whole new field
of study would open in the quest to identify the agents responsible for the migra-
tion and their manner of influence. An active cell migration would endow the
tumour invasion models given by Perumpanani and co-workers with added stand-
ing (Perumpananiet al., 1996, 1999; Perumpanani and Byrne, 1999), so that mod-
els of this type could offer crucial insights into future experimental studies and give
rise to much-needed predictive tools.

The collapse of tumour blood vessels is another poorly-understood phenomenon,
and one which is of fundamental importance to the administration of anti-cancer
agents. The most striking experimental illustration of vascular collapse seems
to be the classic work ofGoldacre and Sylven(1962) published in 1962. The
publications byBrown et al. (2002) and Leu et al. (2000) offer more recent
examples, although the nature of these experiments did not allow the investigators
to make a positive link between the observed macroscopic behaviour and vas-
cular collapse. Very few mathematical models have been developed to explain
the collapse of tumour vessels.Araujo and McElwain(submitted-b, 2003a,b),
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Brewardet al. (2003) and McElwain et al. (1979) have proposed very different
mathematical paradigms for the genesis of tissue stresses and the accompanying
patterns of collapsed blood vessels.

Central to an understanding of tissue stress evolution is the necessity to identify
the precise constitutive nature of growing tumour tissues—a characteristic which
must be determined through future experimental study. The overwhelming major-
ity of mechanical models of tumours consider the model to be an incompressible
fluid [such as the model byMcElwain et al. (1979)], or a mixture of such fluids
[such as the model byBrewardet al. (2003)], either incorporating or neglecting
viscosity. Brewardet al. (2002, 2003) have extended the potential scope of mul-
tiphase fluid models given by incorporating cell–cell interactions which bestow
more active properties to the constitutive nature of the cellular phase than previous
fluid models.Araujo and McElwain (submitted-a,b), on theother hand, emphasise
the importance of considering residual stresses, which necessitates a considera-
tion of the solid characteristics of tissues. It is essential to recognise that each
of these different approaches rely on vastly different phenomenological assump-
tions to reproduce the patterns of vascular collapse demonstrated byGoldacre and
Sylven (1962) andBrown et al. (2002), highlighting the fact that the associated
underlying mechanisms are, as yet, not understood. 1g Necrosis formation is also
a very poorly-understood aspect of tumour development. While most mathemati-
cal investigators have attributed the presence of necrosis purely to depressed lev-
els of oxygen or other vital nutrients, Please and co-workers (Pleaseet al., 1998,
1999; MacArthur and Please, submitted) have argued that mechanical factors are
paramount. At the present time, experimental studies have been unable to offer
sufficient insights to distinguish between these possibilities. The distinction is cer-
tainly an important one, since the formation of necrotic regions appears to correlate
with tumour aggressiveness, and further insights into necrosis formation may yield
fresh information on invasion and metastasis.

Future combinations of ingenious experimental designs and astute mechanistic
mathematical models will be imperative to elucidate these and other enigmas.
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