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■ Abstract Almost all vessels carrying fluids within the body are flexible, and
interactions between an internal flow and wall deformation often underlie a vessel’s
biological function or dysfunction. Such interactions can involve a rich range of fluid-
mechanical phenomena, including nonlinear pressure-drop/flow-rate relations, self-
excited oscillations of single-phase flow at high Reynolds number and capillary-elastic
instabilities of two-phase flow at low Reynolds number. We review recent advances
in understanding the fundamental mechanics of flexible-tube flows, and discuss phys-
iological applications spanning the cardiovascular system (involving wave propaga-
tion and flow-induced instabilities of blood vessels), the respiratory system (involving
phonation, the closure and reopening of liquid-lined airways, and Marangoni flows
on flexible surfaces), and elsewhere in the body (involving active peristaltic transport
driven by fluid-structure/muscle interactions).

1. INTRODUCTION

When a flow is driven through a deformable channel or tube, interactions between
fluid-mechanical and elastic forces can lead to a variety of biologically significant
phenomena, including nonlinear pressure-drop/flow-rate relations, wave propa-
gation, and the generation of instabilities. Understanding the physical origin and
nature of these phenomena remains a significant experimental, analytical, and com-
putational challenge, involving unsteady flows at low or high Reynolds numbers,
large-amplitude fluid-structure interactions, free-surface flows, and intrinsically
2D or 3D motion. Whereas frequently the internal flow involves a single fluid
phase (albeit often of a complex biological fluid such as blood), in many instances
the presence of two or more distinct flowing phases is of primary importance (as
is the case for air-liquid flows in peripheral lung airways, for example). We divide
this review accordingly: Section 2 treats single-phase flows in collapsible tubes,
Section 3 covers recent applications of such flows to a wide range of physiological
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systems, and Section 4 surveys two-phase flows in flexible tubes and channels
(with largely respiratory applications).

2. SINGLE-PHASE FLOW IN COLLAPSIBLE TUBES AND
CHANNELS: THEORY AND EXPERIMENT

The biological applications that have motivated much of the work on flows in
collapsible tubes and channels, and some of the relevant modeling, are well doc-
umented elsewhere (Carpenter & Pedley 2003, Grotberg 1994, Grotberg 2001,
Kamm 1987, Kamm & Pedley 1989, Ku 1997, Pedley & Luo 1998, Shapiro 1977a,
Shapiro 1977b). Our survey here is necessarily selective, but aims to complement
these earlier reviews. It is helpful to focus our discussion of modeling developments
of single-phase flows around a widely used experimental system (the Starling Re-
sistor). First, however, we quickly review some flows in the body where vessel
flexibility is significant.

2.1. Primary Biological Applications

The cardiovascular system provides abundant examples of sites where flow-
structure interactions are of major biological importance (Shapiro 1977a). Most
obviously, pulse propagation in arteries is fundamental for transporting blood from
the heart to tissues and organs throughout the body. Under normal conditions ar-
teries are under sufficiently large transmural (internal minus external) pressure
to remain distended and stiff, so that wall strains are typically small. Important
exceptions are the coronary arteries, embedded in the muscular wall of the heart,
which can be significantly constricted as the heart contracts (Guiot et al. 1990),
and the brachial artery, which is compressed by a cuff inflated around the upper
arm during blood-pressure measurement, in which case flow-induced instabilities
generate clinically useful “Korotkoff sounds” (Bertram et al. 1989, Ur & Gordon
1970). Veins operate under much lower transmural pressures than arteries so that
hydrostatic pressure variations (in systemic veins above the heart but outside the
skull, or in the pulmonary circulation) can be sufficient to induce collapse (i.e.,
a significant reduction in cross-sectional area, but without complete occlusion),
which can limit the flow of blood returning to the heart or passing through ma-
jor organs such as the lungs. Venous collapse is important during exercise, when
muscular compression of leg veins is used to pump blood against gravity up to the
heart, and in therapeutic compression of leg veins for the treatment of deep-vein
thrombosis (Dai et al. 1999). Flow-induced instabilities in the venous system can
lead to palpable thrills or audible murmurs, for example in the collapsed external
jugular vein in the neck of an upright subject (Danahy & Ronan 1974).

The airways throughout the respiratory system are deformable to a degree,
and flow-structure interactions underlie a number of important pulmonary condi-
tions. Expiratory flow limitation is of particular significance: An increase in effort
(i.e., driving pressure drop) during forced expiration, at a given lung volume,
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can lead to no increase, and possibly a decrease, in the flux of expired air, es-
sentially because the driving upstream (alveolar) pressure leads to compression
of conducting airways. This maneuver is often accompanied by wheezing, arising
from a flow-induced instability of deformable airway walls. Inspiration can lead
to flow-induced upper-airway obstruction (contributing to sleep apnea) and insta-
bilities that generate snoring noises. More controlled noise generation arises in the
larynx, where flow-induced oscillations of the vocal chords generate speech. Else-
where in the body, deformability is significant in peristaltic transport, for example
through the intestines and the urogenital tract.

2.2. Experiments: The Starling Resistor

The classical bench-top experiment used to investigate such applications is the
Starling Resistor (Knowlton & Starling 1912). A segment of elastic tubing is
mounted between two rigid tubes and is enclosed in a chamber maintained at a
fixed pressurepe (Figure 1). A fluxQ of fluid is driven through the device by an
imposed pressure droppu − pd, typically at Reynolds numbersRebased on tube
diameter in the range 102–104. The pressures at the upstream and downstream
ends of the collapsible segment (p1 andp2, respectively) are measured and may
be controlled by valves providing additional upstream and downstream flow re-
sistance in the rigid parts of the apparatus. In the absence of any flow (pu= pd),
an increase inpe generates a compressive stress in the tube wall causing it to
buckle from a circular to an elliptic cross-section (except, of course, near its ends,
where it is attached to the rigid tubes). Buckling to a shape with more than two
lobes may arise in short, tethered, or inhomogeneous tubes. Once buckled, the tube
becomes highly compliant so that small additional increases inpe lead to a sub-
stantial reduction in cross-sectional areaα. Further compression leads to contact
of the opposite tube walls, first at a point, and then along a line (Figure 2, left);
once in opposite-wall contact, the tube’s compliance falls because strong bending
forces in the tube wall at the bulbous end of each lobe provide an increasing resis-
tance to area reductions. The “tube law,” the relation between transmural pressure
p − pe (wherep is the internal pressure) andα, for a long thin-walled tube can
be approximated by thin-shell theory for an axially uniform elastic ring (Flaherty

Figure 1 A Starling Resistor: a collapsible tube is mounted between two
rigid tubes and is enclosed in a chamber held at pressurepe. Flow with volume
flux Q is driven by the imposed pressure droppu − pd.
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et al. 1972); this predicts that the primary buckling instability is supercritical and
yields the self-similar relationp− pe∼ α−3/2 for line contact (Figure 2, left). More
sophisticated models, using for example 3D geometrically nonlinear shell theory
(Figure 2, right), capture the effects of mounting onto rigid tubes, axial prestretch
and, potentially, subcritical buckling instabilities (Heil & Pedley 1996).

If a flow is driven through a Starling Resistor (withpu > pd in Figure 1), then
aspe is increased a constriction typically forms first toward the collapsible tube’s
downstream end (where internal pressure is lowest) (Figure 2, right). Various ex-
perimental protocols can then be followed, such as increasing the pressure drop
along the tubep1− p2 while keeping the upstream transmural pressurep1− pefixed
(which leads to “flow limitation,” i.e., a limit in the maximum possibleQ), or in-
creasingQ while keepingp2 − pe fixed (which leads to “pressure drop limitation,”
i.e., a restriction on the largest value ofp1 − p2). Of all who have examined this
system, Bertram and coworkers (e.g., Bertram 1986; Bertram et al. 1990, 1991)
characterized it in greatest detail. In particular, using water in thin-walled tubes,
they mapped out regions in parameter space in which the system exhibits spon-
taneous and often vigorous oscillations. These arise in distinct frequency bands
(from a few up to hundreds of hertz), are strongly dependent on the properties of the
rigid parts of the system, and exhibit hysteresis between both steady and dynamic
states, accompanied by strong evidence of nonlinear phenomena such as mode
interactions and probably (but not definitively) chaotic behavior. This is a particu-
larly rich dynamical system because of the complexity of the internal flow, which
can be turbulent under typical operating conditions. The internal structure of steady
3D flow beyond the 2-lobed “throat” of a collapsed tube was recently visualized
(Bertram & Godbole 1997), revealing axially decaying twin jets with a region of
reversed flow in between. The difficulty of measuring and visualizing flow inside
an oscillating elastic tube is a formidable task, although laser-Doppler velocimetry
results are now becoming available (e.g., Bertram et al. 2001). When air, not wa-
ter, is used for the internal flow (to mimic lung airways), making the inertia of the
tube wall comparable to that of the fluid, noisy high-frequency flutter instabilities
are readily generated, typically when the device exhibits flow limitation (Gavriely
et al. 1989). In the following sections, it is convenient to distinguish between what
are generally called self-excited oscillations (relatively low-frequency oscillations
for which membrane inertia is not a critical factor) and flutter (high-frequency
oscillations for which membrane inertia is generally significant), although this
distinction is sometimes blurred.

2.3. Theoretical Models

Theoretical models of incompressible flow through the Starling Resistor, or through
an analogous 2D system introduced by Pedley (1992) (a finite-length channel,
in which a segment of one wall is replaced by a membrane under longitudinal
tension, see Figure 3), developed from lumped-parameter models to spatially dis-
tributed 1D, 2D, or 3D models. Much of this modeling effort was recorded in detail
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Figure 3 A 2D channel of lengthL1 + L + L2 and undisturbed widtha, containing a
membrane under tension; flow is driven through the channel either with imposed flux or
imposed pressure droppu − pd.

elsewhere (Heil & Jensen 2003, Pedley & Luo 1998, Shapiro 1977b), so we discuss
only some of the more significant and recent contributions.

2.3.1. ONE-DIMENSIONAL MODELS Although being ad hoc to a degree, 1D models
have proven a powerful tool in understanding a wide range of collapsible-tube
flows. These models involve partial differential equations (PDEs) describing mass
and momentum conservation, coupled through a local pressure/area relation, typ-
ically taking the form

αt + (uα)x = 0 (1a)

ρ(ut + uux) = −px − F (1b)

p − pe = P(α) − Tαxx. (1c)

Here x measures axial distance along the tube,t time, α(x, t) the tube’s cross-
sectional area,u(x, t) andp(x, t) the cross-sectionally averaged axial velocity and
pressure,ρ the constant fluid density, and subscriptsx andt derivatives. The term
F ≥ 0 represents viscous dissipation, either distributed frictional losses (e.g.,F =
F(u, α)) or quasi-steady losses arising in a region of separated flow [e.g.,F =
(χ − 1)ρuux, in which χ = 1 where the flow is fully attached and 0< χ < 1
where it is separated andux < 0 (Cancelli & Pedley 1985)]. The nonlinear tube
law P(α) in Equation 1c characterizes the highly variable compliance of the tube
as it changes from being distended (p > pe) to buckled or highly compressed (p <

pe); a simple algebraic approximation to the graph shown in Figure 2 (e.g., Elad
et al. 1987) is effective for many applications. The tube law in Equation 1c is here
accompanied by a termTαxx, approximating the effects of constant longitudinal
tensionT, whereαxx approximates the longitudinal curvature of the tube wall.
Further terms representing bending stiffness, wall damping, and wall inertia can
be included in Equation 1c. These terms can have an important effect in stability
analysis of flow-structure interactions because in their absence such problems can
exhibit singular behavior.

The PDEs in Equation 1a–c withT = 0 are closely related to those describing
compressible-gas and shallow-water flows, and so many features of these widely
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studied systems carry over to collapsible-tube flow, including wave propagation
[small-amplitude pressure waves propagate along the tube with speedu ± c,
wherec2= αP′(α)/ρ], choking [for steady subcritical flows (with 0< u< c) in the
presence of friction,α → 0 at sufficiently large, finitex], steady sub- to supercritical
flow transitions (forced by suitably chosen variations inpe, or material properties),
and abrupt super- to subcritical transitions via an elastic jump (the analogue of
a hydraulic jump in shallow-water flow). Propagating elastic jumps arise at the
leading edge of roll waves, for example, which Brook et al. (1999) predicted
to form spontaneously in long inclined collapsible tubes using numerical shock-
capturing techniques.

Supercritical flow provides a possible mechanism of flow limitation: Ifu> cand
T = 0, waves cannot in principle propagate upstream into a region of supercritical
flow, and a reduction in downstream pressure cannot lead to an increase in flow
rate. Though recent experiments show that flow limitation is a necessary but not
sufficient condition for the onset of self-excited oscillations or flutter (Bertram &
Castles 1999, Gavriely et al. 1989), 2D computational studies that take full account
of effects such as viscous dissipation and longitudinal tension (see below) suggest
there is no direct link between the onset of supercritical flow and the growth of
these instabilities (Luo & Pedley 1998, 2000). However, recent 2D simulations
of steady flow in an axisymmetric elastic tube (Shim & Kamm 2002) support
the wave-speed concept of flow limitation predicted by 1D models, even when
membrane tension and bending stiffness allow short waves to propagate upstream
through a region of supercritical flow.

An important reason for including the tension term in Equation 1c is to match
the order of the PDEs to the four boundary conditions required to describe flow in
the Starling Resistor: These fix the area at either end of the collapsible segment and
relate the pressure to the local axial velocity, accounting for the viscous resistance
and fluid inertia in the rigid tubes. Then, neglecting frictional effects, Equations 1a–
c predict choking [α → 0 in finite time (Cancelli & Pedley 1985), a manifestation
of so-called static divergence instability], but including dissipation, either through
a distributed frictional term (Hayashi et al. 1998) or through Cancelli & Pedley’s
(1985)F = (χ − 1)ρuux term, leads to a rich variety of self-excited oscillations
(e.g., Cancelli & Pedley 1985, Hayashi et al. 1998, Jensen 1992, Matsuzaki et al.
1994). These oscillations arise in distinct frequency bands, as seen experimentally
because they originate as normal modes of the system, each with a discrete number
of wavelengths along the collapsible segment (Jensen 1990). Nonlinear mode
interactions give rise to complex dynamical behavior (Jensen 1992) reminiscent
of that seen experimentally.

While 1D models provide significant insights, they fail to provide reliable quan-
titative matches with experiment. Neither the representation of viscous dissipation
for high-Re flow in Equation 1b, nor the modified tube law in Equation 1c, is
derived rationally from a higher-order system, and both can exhibit significant
qualitative deficiencies (particularly, for example, in describing energy losses as-
sociated with unsteady flow separation). Furthermore, a 1D framework cannot be
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guaranteed to capture all possible modes of instability known to be present in sys-
tems involving flows over compliant surfaces, such as Tollmien-Schlichting (TS)
waves or traveling-wave flutter (TWF) (Carpenter & Garrad 1985, 1986). Thus,
in the 1980s and 1990s, attention turned to the development of rational 2D mod-
els. Two classes of model are important here: those describing small-amplitude
instabilities in spatially uniform, unbounded elastic-walled channels, and those
describing flow in a finite-length channel with a section of one wall replaced by a
segment of membrane under longitudinal tension (Figure 3).

2.3.2. TWO-DIMENSIONAL MODELS OF UNBOUNDED FLOWS Stability analysis of
small-amplitude disturbances to unbounded flow in a spatially uniform compliant
channel, based on the Orr-Sommerfeld equation and accounting for wall inertia,
damping, bending stiffness, tension and a spring-backing, has revealed multiple
modes of instability. [These have been investigated in detail in the context of open
flows over compliant surfaces, normally with the motivation of delaying transition
to turbulence. We restrict attention here to channel flows; for reviews of relevant
early work see LaRose & Grotberg (1997) and Davies & Carpenter (1997a).] The
three modes most commonly encountered are conveniently described using the
well-known Benjamin-Landahl energy classification: TS waves (modified by wall
flexibility) are Class A (stabilized when energy is transferred irreversibly from the
flow to the wall, thus destabilized by wall damping–for these so-called “negative
energy waves” damping increases the wave energy while reducing the overall en-
ergy in the system); TWF is Class B (destabilized when energy is transferred from
the flow to the wall, thus stabilized by wall damping); and static divergence is Class
A or C (the latter being relatively indifferent to the direction of energy transfer).
TS waves and TWF are convective instabilities, whereas static divergence can give
rise to low (or zero) frequency oscillations that are absolutely unstable. TWF relies
on pressure and displacement at the wall being out of phase with one another so
that work can be done on the wall. This phase shift can arise through an inviscid
mechanism confined to critical layers (Davies & Carpenter 1997a, Huang 1998,
Miles 1957). Additional modes of instability have also been identified: Davies
& Carpenter (1997a) showed how an interaction between TS and TWF modes
can be strongly unstable; LaRose & Grotberg (1997) identified an apparently dis-
tinct long-wave instability of developing flow in a compliant channel; and Walsh
(1995) identified a long-wave flutter mode that arises when coupling between
transverse and longitudinal wall strain is significant. Kumaran and coworkers also
highlighted the limitations of representing the compliant wall as a membrane or
plate that moves only in the transverse direction. In an extensive series of papers,
they identified novel viscous and inviscid instabilities of flows over gel-like vis-
coelastic surfaces in which axial and transverse motions of the wall are coupled.
This coupling allows energy to be transferred from the mean shear flow to fluc-
tuations through work done at the wall, even in the limit of zeroRe. This yields,
for example, a viscous mode of instability not present in rigid systems. This has
a counterpart at highRe, operating through a similar energy-transfer mechanism,
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for which viscous stresses are confined to a wall layer of thicknessRe−1/3 relative
to the channel width. A further new inviscid mode, distinct from TS instability,
grows via energy transfer arising from Reynolds stresses within a critical layer,
also of thicknessRe−1/3. Shankar & Kumaran (1999) and Kumaran (2000, 2003)
reviewed this family of instabilities in more detail.

2.3.3. TWO-DIMENSIONAL MODELS OF BOUNDED FLOWS Studies of small-ampli-
tude disturbances in spatially unbounded channel flows highlight a wide range
of potential instabilities, but provide only a limited guide to behavior in spatially
inhomogeneous or bounded systems. Because a key feature of the Starling Re-
sistor is its finite spatial extent, an alternative approach has been to consider the
asymmetric 2D system illustrated in Figure 3. The flow here is driven by a fixed
pressure drop or fixed upstream or downstream flux, and contains a finite-length
membrane that can in principle undergo large-amplitude deformations.

Many workers have considered this problem when deflections of the compliant
segment are small relative to the channel width. Replacing the membrane by a
compliant panel, Davies & Carpenter (1997b) used a novel computational for-
mulation of the linearized Navier-Stokes equations to show how energy can be
transferred between TS and TWF modes at the panel’s boundaries. Treating the
flexible segment as a membrane and assumingRe À 1, Guneratne (1999) used
interactive boundary-layer theory to describe steady flows: whenpe= 0 and the
membrane tensionT is reduced from an initially large value, the system exhibits
an increasing number of static eigenmodes arising via static divergence instabil-
ity; nonzerope breaks the symmetry of the solution structure so that asT falls
one passes through regions of parameter space exhibiting single, multiple, or no
steady solutions. Huang (2001) assumed that the membrane has inertia, damping,
and relatively low tension, and thatpe is chosen to ensure the existence of a uniform
steady solution. Analyzing the linearized Navier-Stokes equations numerically, he
showed how the system exhibits both static divergence (at sufficiently low tension)
and flutter (dependent on membrane inertia), with both sensitive to the choice of
upstream and downstream boundary conditions.

The richness of the behavior revealed by these simplified studies is reflected by
Navier-Stokes simulations of steady laminar flows in the system shown in Figure
3, atRe ≡ ρUa/µ of up to a few hundred, wherea is the channel width,U the
input flow speed, andµ the dynamic viscosity. These finite-element schemes, in
which the fluid and solid solvers are fully coupled (Luo & Pedley 1995, 1996; Rast
1994; Shim & Kamm 2002), predict steady membrane configurations similar to
those of 1D models, flow separation downstream of the asymmetric indentation,
and sometimes a long-wavelength nonlinear standing wave in the flow beyond the
constriction, in which the inviscid core flow sweeps abruptly from wall to wall,
with regions of wall-bound separated flow on both walls of the channel. Luo &
Pedley (1996) showed how these steady flows can become unstable to self-excited
oscillations ifReis sufficiently high or the membrane tension sufficiently low. In
their simulations, membrane oscillations generate (or are possibly generated by)
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downstream propagating waves in the inviscid coreflow beyond the constriction.
These are “vorticity waves,” large-amplitude inviscidly generated TS waves de-
scribed previously via experiments, simulations, and analysis of flow through a
channel with a deformable segment of wall that oscillates in a prescribed manner
(e.g., Pedley & Stephanoff 1985, Ralph & Pedley 1988) under conditions ofReÀ
1 and frequencyω ¿ µ/ρa2. Although this striking activity occurs downstream of
the collapsed segment, Luo & Pedley (1996) found that the dominant dissipation
occurs, surprisingly, in viscous boundary layers on the channel walls upstream
of the constriction. Subsequently, Luo & Pedley (1998) showed how introducing
inertia in the membrane allows an additional high-frequency flutter mode to grow.
They also showed how the primary instability is sensitive to the choice of boundary
conditions, being more stable when the upstream flux is prescribed rather than the
pressure drop, for example (Luo & Pedley 2000).

Exploiting the simplification of large membrane tension so that the system
shown in Figure 3 has a unique steady solution in which the membrane is almost
flat, Jensen & Heil (2003) used a combination of asymptotic and computational
methods to characterize in detail a mechanism of self-excited oscillation. When
viscous effects are weak, the initially uniform membrane supports a family of
high-frequency inviscid normal modes, in which transverse membrane deflections
generate predominantly axial oscillations of the fluid in the entire channel. A scal-
ing analysis shows that their frequencyω scales likeω2 ∼ aT/ρL4, whereL ( Àa)
is the membrane length (which is representative of the lengthsL1 andL2 of the
upstream and downstream rigid segments, see Figure 3). IfL1 < L2, the greater
downstream fluid inertia suppresses fluctuations so that the modes have greater
amplitude at the upstream end of the collapsible segment. An oscillating normal
mode can then extract energy from an imposed pressure-driven flow (with mean
speedU, for example) because kinetic energy fluxes into the upstream end of the
collapsible segment of the channel (where oscillatory amplitudes are larger) exceed
those out of the downstream end. For small-amplitude, neutrally stable oscillations,
a balance between the energy extracted from the mean flow with that dissipated
in viscous boundary layers (Stokes layers) along the channel walls, of thickness
(µ/ρω)1/2(¿a), provides an estimate of the critical Reynolds number for the on-
set of oscillations, namelyRe = O((ρaT/µ2)1/4). A formal asymptotic analysis
yields the prefactor in this relationship, which has a strong dependence onL1 and
L2 (going to infinity asL2 → L1+, for example). Jensen & Heil (2003) then used
Navier-Stokes simulations to verify the accuracy of these asymptotic predictions
and showed that the same mechanism persists at large amplitudes; no significant
vorticity waves are generated in this case (becauseω À µ/ρa2), although the
flow exhibits a rich variety of secondary instabilities, located primarily toward the
upstream end of the collapsible segment. This class of self-excited oscillation is a
global mode of the entire system, not relying on intrinsic local hydrodynamic (TS
or flutter) modes, but requiring dissipation (in this case Stokes layers) to avoid static
divergence. It remains to be seen whether this or another mechanism underlies the
low-frequency self-excited oscillations described by Luo & Pedley (1996).
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2.3.4. THREE-DIMENSIONAL MODELS To describe the 3D flow-structure interac-
tions arising in the Starling Resistor, Heil and coworkers used finite-element meth-
ods to couple geometrically nonlinear Kirchoff-Love shell theory (allowing both
large deformations and small strains) to an internal 3D Navier-Stokes flow. Re-
stricting attention initially to Stokes flows, or to lubrication theory (which works
remarkably well in this problem at lowRe), they showed how nonaxisymmetric
buckling of the tube (e.g., Figure 2, right) contributes to nonlinear pressure-flow
relations that can exhibit flow limitation through purely viscous mechanisms (Heil
1997, Heil & Pedley 1996). For short tubes under compression, the buckling insta-
bility may be subcritical, leading to hysteresis in the pressure-flow relation, so that
an initially open tube “snaps through” to a collapsed state that under certain con-
ditions may have the tube’s opposite walls in contact. Heil’s (1997) Stokes-flow
simulations (Figure 2, right) show excellent agreement with experiment. These
computations were recently extended to describe steady 3D flows in nonuniformly
buckled tubes atReof a few hundred (Hazel & Heil 2003). These studies reveal
twin jets emerging from the 2-lobed throat, with reversed flow between them; the
jets broaden and merge further downstream, consistent with Bertram & Godbole’s
(1997) observations. Whereas these computations assume the flow has a fourfold
symmetry, observations on a collapsible-tube system (Kounanis & Mathioulakis
1999) show a jet emerging from a constriction that remains attached to one wall (via
the Coanda effect), with flow separation occurring on the other, a flow with only
twofold symmetry. It is an open question whether symmetry breaking underlies a
further potential mechanism of instability in this system.

3. SINGLE-PHASE FLEXIBLE-TUBE FLOWS: BIOLOGICAL
APPLICATIONS

The Starling Resistor has attracted significant interest from experimentalists and
theoreticians. It is simple to operate, exhibits dramatic flow-structure interactions,
and presents a wealth of modeling opportunities. However, it is only a model
system and it is easy to be diverted from the physiological flows that provided its
original motivation. We therefore return to some biological applications.

3.1. Flow Limitation

One-dimensional models for flow limitation in the lung during forced expiration
are now well developed and have been described elsewhere (Grotberg 1994). A
novel application of 1D modeling of flow limitation is the giraffe jugular vein
(Pedley et al. 1996). Because measurements show that the internal pressure in the
vein increases with height (rather than falling hydrostatically), it is inferred that the
jugular vein is strongly collapsed, offering large viscous resistance. Simulations
suggest the highly collapsed region terminates at its downstream end with an elastic
jump, returning a subcritical flow to the heart. However, too high a flow rate moves
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this jump toward the heart until steady flow is no longer possible, and instead the
system exhibits irregular small-amplitude oscillations that effectively limit the flow
(Brook & Pedley 2002). Flow limitation is also an important regulatory mechanism
during postural changes. As a giraffe lifts its head from drinking, there is rapid
emptying of the jugular vein, but its rapid collapse prevents excessive flow rates
from developing.

3.2. Wave Propagation

Small-amplitude wave propagation in elastic tubes, described by linear or weakly
nonlinear analysis, has an extensive literature that we do not attempt to survey here,
noting only that Pedley (1980) provides an introduction to wave attenuation due
to viscous losses, tapering, tethering, branching, and so on, and many others (e.g.,
Demiray 1996) have treated topics such as solitary wave formation. The maturity
of theoretical developments means that recent interest has turned instead to specific
applications, such as the effect on pulse-wave propagation of surgical interventions
such as vascular stents and grafts. A mismatch in diameter or compliance between
native and artificial material can induce wave reflections and flow disturbances
that may promote disease processes in the arterial wall, mediated for example by
altered wall shear-stress distributions (Salacinski et al. 2001). For example, Wang
& Tarbell (1992, 1995) showed how the phase difference between pressure and flow
rate in oscillatory flexible-tube flow, which is altered by wave reflections, influences
the steady-streaming flows driven by nonlinear convective accelerations, lowering
the wall shear-stress distribution and making it more oscillatory, thereby promoting
atherogenic risk factors. Progress in measuring the degree of wave reflection in
biological vessels has been achieved through the use of “wave intensity analysis”
(Khir et al. 2001, Parker & Jones 1990), a time-domain method based on the method
of characteristics in which the local wave-speed is determined from simultaneous
velocity and pressure measurements, allowing forward and backward propagating
waves to be identified.

The importance of flow patterns in the development of arterial disease has
motivated many computational simulations of flows in large arteries, a subset of
which have included the effects of compliant boundaries. For example, Perktold
& Rappitsch (1995) coupled (iteratively) geometrically nonlinear shell theory to
a Navier-Stokes solver in a model of the carotid artery bifurcation, and showed a
modest quantitative decrease in wall shear-stress magnitude relative to the rigid-
walled case; in other cases, distensibility was less significant than variations in
arterial geometry, for example (Steinman & Ethier 1994). A key prediction of
such calculations is the level of flow-induced arterial wall strain, for example
in a bypass graft, which is an important factor in understanding the causes of
graft failure (Leuprecht et al. 2002). Flow-structure interactions are possibly more
significant in pathological conditions such as aortic dissection, in which blood
enters the vessel wall through a tear in the intima or intramural hemorrhage, and
then the tear propagates through the wall, possibly leading to rupture of the vessel
(Tam et al. 1998).
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A less familiar site of wave propagation is the spinal cord: This contains cere-
brospinal fluid and occupies a rigid fluid-filled cavity (the subarachnoid space)
running from the base of the skull down to the base of the spine. A cough or a
sneeze creates waves that propagate along the cord that may steepen to form prop-
agating elastic jumps. At a blockage, reflection of a shock would create localized
pressure variations that (it is hypothesized) lead to the formation of longitudinal
cavities in the spinal cord. A 1D inviscid model of this process, treating the spinal
cord as a flexible tube, confined within a rigid fluid-filled coaxial cylinder, has
been used to investigate this potential mechanism of the disease syringomyelia
(Carpenter et al. 1999).

3.3. Self-Excited Oscillations

An important and potentially dangerous manifestation of self-excited oscillation
arises in arterial stenoses (Ku 1997). High flow speeds through a narrow steno-
sis lead to low pressures, which can induce arterial collapse, flow limitation, and
possible flow-induced instabilities. The resulting static and dynamic loading on
the diseased arterial wall may be sufficiently vigorous or sustained to fracture
the stenosis’ plaque cap, causing fragments to be swept downstream, a possible
precursor of heart attack or stroke. Ku (1997) reviewed early 1D models of this
process, which show how supercritical flow downstream of the stenosis terminates
in an elastic jump, a configuration leading to flow limitation. More realistic com-
putational models have been developed subsequently, including those of Bathe &
Kamm (1999) and Tang et al. (1999), both of which involve computational studies
of axisymmetric interactions between a high-Re laminar flow and a nonlinearly
elastic tube wall that incorporates a high-grade stenosis. Despite modest differences
in models and methods (e.g., a fully coupled versus an iterative numerical scheme,
unsteady versus quasi-steady flows, large versus small axial prestretch), they both
provide estimates of damagingly high shear stresses exerted on endothelial cells
and large cyclical compressive stresses in the downstream shoulder of the stenosis.

Self-excited oscillations are responsible for the generation of speech in the
human larynx and bird-song in the avian syrinx. Flow through the larynx generates
instabilities of the vocal chords, which excite acoustic modes in the upper airways.
Theoretical models of phonation have a long history (to which full justice cannot
be done here), going back to the influential lumped-parameter model of Ishizaka
& Flanagan (1972), in which the glottal wall is characterized by two independent
masses. Low Bernoulli pressures and elastic recoil pull the walls of the glottis
together, leading to complete but transient airway occlusion; the continuing flow of
air from the lungs causes pressure to build up sufficiently to reopen the glottis; this
sequence then repeats at a frequency dictated by factors including wall inertia and
viscoelasticity. Numerous modifications of this model have since been developed,
for example capturing more accurately the mechanical properties of the oscillating
glottis walls (Story & Titze 1995) or exploring the model’s nonlinear dynamics
(Steinecke & Herzel 1995). Representation of the internal fluid dynamics has also
been refined substantially, from 1D distributed collapsible-tube models that enable
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wall collision (Ikeda et al. 2001), to 2D Navier-Stokes simulations, either with
prescribed wall motion (Zhao et al. 2002) or coupled to a lumped-parameter model
of wall mechanics (de Vries et al. 2002). Acknowledging that the jet emerging from
the glottis is in reality turbulent, Zhao et al.’s (2002) computations of compressible,
laminar flow capture unsteady vortex shedding beyond the constriction, at a rate
influenced by the frequency of glottis motion, and demonstrate that the glottis acts
as a compact acoustic source, predominantly as a dipole (due to the presence of
a mean flow) rather than a monopole (due to volume changes), at least at low
frequencies. For a recent survey of models for other respiratory noises (such as
wheezing or snoring), see Grotberg (2001).

3.4. Active Motion

Many vessels conveying fluids through the body transport their load using peri-
stalsis, active muscular compressions of the vessel wall; examples include the
esophagus, gut, ureter, and uterus (Eytan & Elad 1999). Peristaltic flows driven
by prescribed wall motions have been investigated intensively over many years.
Recent models have addressed the significance of unsteadiness arising from end
effects in finite-length channels (Li & Brasseur 1993), steady-streaming flows and
their mixing properties (Selverov & Stone 2001, Yi et al. 2002) (with applications
to microfluidic devices with flexible walls), and the physiological and mechanical
advantages arising from longitudinal shortening of the vessel wall, such as occurs
during muscular contractions in the esophagus (Pal & Brasseur 2002). Fewer inves-
tigators have considered how the muscular wall responds to flow-induced forces,
treating it as a free boundary. Griffiths (1989) modeled the ureter as a finite-length
collapsible tube subject to a prescribed, moving external pressure distribution,
finding an upper limit on the frequency of propagating waves for which peristaltic
transport is effective. Allowing the wall to respond to the forces placed upon it is
important because, in the presence of a mean pressure gradient, a moving external
pressure distribution can generate traveling waves that propagate away from the
disturbance, as Kriegsmann et al. (1998) showed for the closely related case of a
thin viscous fluid layer subject to external pressure forcing. Going a step further, it
is necessary to integrate muscle, solid, and fluid mechanics. For example, Carew &
Pedley (1997) developed a model of flow in the ureter using a constitutive relation
for the muscular wall that incorporates passive viscoelasticity with active force
generation dependent on electrical stimulation, local muscle stretch, and rate of
stretch. Their model predicts the phase lag between stimulation and constriction
arising from flow-structure muscle interaction, for example.

4. MULTIPHASE FLOWS IN FLEXIBLE TUBES

The cardiovascular system has been a dominant source of applications of studies
of flows in flexible tubes. The airways of the lung provide a further source of
important problems where multiphase fluid mechanics has important biological



10 Nov 2003 22:13 AR AR203-FL36-06.tex AR203-FL36-06.sgm LaTeX2e(2002/01/18)P1: IBD

BIOFLUID MECHANICS 135

applications, involving flexible tubes with a liquid lining or a liquid occlusion.
Below we review major recent developments for which wall flexibility is a critical
factor. First, we consider how surface tension, elastic forces, and airflow together
control the configuration of a deformable airway and its internal liquid lining. The
primary aim is to determine the conditions leading to airway closure, whereby the
liquid lining forms a plug occluding (and collapsing) the airway and inhibiting
gas exchange. Second, we discuss mechanisms by which an initially occluded
airway may be reopened by inflating the airway with an advancing air bubble, or by
displacing a preexisting liquid plug. Finally, we examine liquid-lining flows driven
by interactions between in-plane stretching of the airway wall and Marangoni
forces due to the presence of surfactants.

4.1. The Capillary-Elastic Instability

4.1.1. AXISYMMETRIC FLOW AND DEFORMATION Motivated by airway closure
dynamics in the lung, Halpern & Grotberg (1992) analyzed the stability of a
liquid-lined, flexible tube under longitudinal tension. The system was assumed ax-
isymmetric and the external pressure was held constant. Using lubrication theory
and a modified form of the normal-stress boundary condition (Gauglitz & Radke
1988) to derive evolution equations that captured both the thin-film dynamics and
quasi-static capillary surfaces, they showed that there is a critical film-thickness
to tube-radius ratio,εc, above which disturbances grow via the Rayleigh instabil-
ity to form liquid bridges.εc is strongly dependent on fluid and wall properties,
decreasing with increasing surface tension or wall compliance. The important pa-
rameter reflecting the relative strengths of the mean surface tensionσm, which is
destabilizing, and wall elasticity, which is stabilizing, is0 = σm(1 − γ 2)/Eh0,
whereγ is the Poisson ratio of the tube material,E is its Young’s modulus andh0

is the tube wall thickness. For example, wall compliance in physiologic ranges of
0, say0 ∼ 0.1, can reduceεc from a rigid-tube value of∼0.17 to a flexible-tube
value of 0.12 using a disturbance wavelength equal to the airway length. Airway
closure occurs more rapidly with increasing unperturbed film thickness, surface
tension, wall flexibility, and decreasing wall damping. Halpern & Grotberg (1993)
subsequently showed that surfactant increasesεc by as much as 60% for physio-
logical conditions, and that the closure time for a surfactant-rich interface can be
approximately five times greater than the surfactant-free system. Surfactant stabi-
lizes the system both by reducing the overall surface tension and by introducing
Marangoni stresses that slow the fluid flow feeding the growing disturbance. Otis
et al. (1993) modeled a liquid-lined, rigid tube whose radius decreases with time at
a prescribed rate to mimic exhalation. Their numerical results show that surfactant
is effective in retarding or eliminating liquid bridging through the reduction of the
mean surface tension and the action of surface tension gradients. The former effect
is also critical in minimizing the magnitude of the negative pressure in the liquid
layer and thus presumably in reducing the tendency for the airway to collapse
along its length.
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4.1.2. NONAXISYMMETRIC FLOW AND DEFORMATION Just as a flexible tube buck-
les under external compression (Figure 2), an airway wall under compression will
likely buckle to nonaxisymmetric configurations with circumferential modes with
wavenumbern≥ 2. The liquid lining of an airway then will likely form pools in the
circumferential folds of the wall. The 2D model of Hill et al. (1997) investigated this
situation, treating the airway as a thin-walled, elastic tube subject to a prescribed
external pressure. The airway’s configuration is determined by bending stresses in
the wall and a compressive load arising in part from surface tension associated with
liquid that partially fills the folds. Takingn = 16 (typical of values seen experi-
mentally), they found that if the liquid volume is small (<2% of luminal volume),
the air-liquid interface coincides with the fold-region’s wall shape and surface
tension does not significantly affect the relationship between cross-sectional area
α and transmural pressureP. However, for fluid volumes>2%, surface tension
contributes to airway compression and destabilizes the system. The shape of the
staticα(P) curve reveals two stable regions (dα/dP> 0) connected by an unstable
region (dα/dP < 0). Snap-through from a stable, axisymmetric shape to a stable,
partially collapsed state may therefore occur. The tube lumen always has an air
core in this model, unlike that of Heil (1999a), who computed the 3D configura-
tion of an otherwise dry tube that is occluded by a localized liquid plug with a
finite contact angle. The static force balance, including external compression, for
then = 2 mode also predicts anα(P) curve with two stable limbs connected by
an unstable solution. A stable axisymmetric shape can snap down to stable col-
lapse with wall-wall contact over part of the cross-section. Larger surface tension
permits ann = 3 mode to arise whose more complicatedα(P) curve has stable,
partially collapsed states without opposite-wall contact. In an extended treatment
(Heil 1999b), this model also shows that the minimal volume of the liquid bridge
can be much smaller than that required for closure in a rigid tube [experiments
using rigid tubes predict critical volumes of 5.47R3 (Everett & Haynes 1972)
and 5.6R3 (Kamm & Schroter 1989), whereR is the tube radius]. This is expected
because the walls are much closer together in a buckled tube, requiring less liquid
to fill the gap. It was not clear from Heil’s results whether or not the system could
start from an axisymmetric state and buckle to a nonaxisymmetric shape resulting
in closure, if the liquid volume were smaller than that required for axisymmetric
closure. This question was addressed by Heil & White (2002), this time in 2D
and with fluid flow, where the tube became occluded even if the volume of fluid
in the liquid lining was much smaller than that required to cause occlusion in the
axisymmetric state. Using a much simpler wall model, based on Euler-Bernoulli
beam theory, a 2D quasi-static analysis in Rosenzweig & Jensen (2002) reached
qualitatively similar conclusions, including the reduction in critical liquid volume.
For example, their dimensionless ratio relating surface tension to wall elasticity
is equivalent to0/δ2, whereδ = h0/R. Assuming zero external pressure, when
0/δ2 = 4, their model predicts that closure can occur for an initial film thickness
of 0.066R in a circular tube.

Capillary-elastic instabilities are important in microscale biological phenom-
ena where there may be more than one liquid layer. Pozrikidis (2000) treats an
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annular system of two concentric liquid layers bounded externally and internally
by rigid tubes, where the boundary between the liquids can have elastic properties
in addition to surface tension. This is a model of lipid bilayers found in cell mem-
branes and tubules. The surface tension is responsible for the Rayleigh capillary
instability, but the elastic tensions resist the deformation and slow down or even
prevent the growth of small perturbations.

4.1.3. STABILIZATION BY OSCILLATORY FORCING Collapse of an airway with liquid
plugging eliminates gas exchange through the airway until it is reopened. Thus,
there may be reasons to prevent this instability at the outset. Halpern & Grotberg
(2003) investigated the effects of an oscillatory flow imposed on the core fluid of a
liquid-lined, rigid tube; such a flow could mimic breathing, for example. The oscil-
latory core flow exerts tangential and normal stresses on the air-liquid interface that
can prevent closure by nonlinear saturation of the capillary instability. The stabi-
lization mechanism is similar to that of a reversing butter knife, where the core shear
wipes the growing liquid bulge back onto the tube wall during the main tidal vol-
ume stroke, but allows it to grow back as the stroke and shear turn around. To
be successful, the leading film thickness ahead of the bulge must be smaller than
the trailing film thickness behind it, a requirement necessitating that the bulge
be swept along at large enough speeds. When this process is tuned correctly,
the two phases balance and there is no net growth of the liquid bulge over one
cycle.

4.2. The Motion of Long Bubbles in Flexible Tubes
and Channels

4.2.1. EXPERIMENTS The propagation of an air finger into a liquid-filled, flexible
tube arises in models of airway reopening, a process occurring during mechanical
ventilation of diseased or injured lungs or during the initial opening of airways
with a newborn’s first breath. This important problem was initially examined by
Gaver et al. (1990), in which airflow was forced into a one end of a long, thin-
walled, polyethylene tube that was otherwise liquid-filled and flattened to a uniform
thickness. They measured the relationship between the velocity,U, of the opening
meniscus and the bubble pressure,Pb, while using tubes of different radii,R, and
liquids with different viscosity,µ, and surface tension,σ . They found their data fit
well to the dimensionless equationPbR/σ = 8.3+ 7.7Ca0.82, where the capillary
numberCa = µU/σ < 0.5. WhenCa> 0.5, viscous forces added appreciably to
the overall opening pressures. As the formula indicates, steady reopening requires
Pb to be in excess of a yield pressure,Py ∼ 8.3 σ/R, a value consistent with
physiologic experiments (Naureckas et al. 1994). A value ofPy ∼ 1.85σ/R in
later 2D experiments of flexible channel opening (Perun & Gaver 1995a) indicated
the importance of geometrical effects. Experiments conducted with prescribed
bubble volume flux rather than prescribed pressure revealed transient overshoot
in Pb during the initiation of bubble motion, and regimes of unsteady motion
(Perun & Gaver 1995a, Perun & Gaver 1995b), features that may be significant
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in clinical ventilation strategies. Issues similar to those arising in lung airways
are also important in the Eustachian tube, which connects the middle ear with the
nasal cavity. Ghadiali et al. (2002) introduced surfactants into the middle ear of
monkeys to reduce surface tension of the liquid-lined (or partially filled) Eustachian
tube. Their results show that yield pressures were reduced and the apparent tube
compliance was increased by this intervention.

Because the mucus lining of an airway may have non-Newtonian properties,
Hsu et al. (1994) used a similar experimental setup as Gaver et al. (1990), but
with aqueous sodium alginate solutions with and without calcium chloride and
sodium dodecyl sulfate. In various concentrations the resulting fluid ranged in
surface tensions, storage and loss moduli, and shear viscosity. They found a similar
dimensionless equation as Gaver et al. (1990), using the shear-dependent viscosity
in their definition ofCa. However, at higherCathey report a flow instability known
as “stress-overshoot,” which occurs when the time scale for deformation is shorter
than the entanglement lifetime of these complex fluid macromolecules. Using
non-Newtonian fluids described by power-law and Herschel-Buckley models with
a solid-fluid shear yield stress,τ y, similar experiments in a flattened, flexible tube
(Low et al. 1997) find that increasingτ y increasesPy.

4.2.2. THEORETICAL MODELS Gaver et al. (1996) developed a theoretical model of
bubble propagation in a 2D flexible channel combining a lubrication approxima-
tion with a boundary-element method, wherePb drives the flow but also inflates
the channel, whose liquid-filled portion far downstream has height 2H. The the-
ory exhibits two distinct types of behavior in itsPbH/σ -Ca relationship, denoted
“pushing” and “peeling” (Figure 4). For lowCa, PbH/σ decreases asCa increases.
In this “pushing” regime there is a long elastic transition region between the

Figure 4 Steady-state streamlines for flow ahead of an air-finger forced through a liquid-
filled, flexible channel with selected wall and fluid parameters. (a) Capillary number Ca=
0.2, recirculation region appears ahead of the air-finger (pushing mechanism). (b) Ca = 0.5,
no recirculation region and the transition distance to the undisturbed, upstream channel height
is shorter (peeling mechanism). From Gaver et al. (1996).
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advancing meniscus in the upstream, wide part of the channel, and the first point
where the channel height is 2H. IncreasingCa causes a decrease in the elastic
transition length. Consequently, the viscous resistance reduces and a lowerPbH/σ

is required to drive the flow. For largeCathe elastic transition distance is relatively
short and the bubble tip is more pointed (Figure 4b). This is the peeling regime
that is dominated by wall tension and fluid viscous forces, and for whichPbH/σ

increases withCa (as seen experimentally). In this regime the channel wall has
a sharp bend just ahead of the bubble tip: The low fluid pressure near the bend
provides the adhesive force that must be overcome to reopen the channel. Adding
surfactant to the system modifies thePbH/σ − Ca relationship. Yap & Gaver
(1998) showed that the resulting Marangoni stresses generally require a larger
driving pressure for any givenCa. Jensen et al. (2002) further investigated the
peeling regime, showing that for large longitudinal tension the channel exhibits
three distinct fluid-elastic regions: the wide inflated channel behind the bubble
tip, the unopened channel ahead, and the bubble-tip region where the locally 2D
flow acts like a low-Reynolds-number valve. Asymptotic solutions in these re-
gions were formally matched together, giving an approximation of thePbH/σ −
Ca relationship that compares well with numerical results. An extension of this
model to account for unsteady effects captures the transient overshoot inPb seen
experimentally (Naire & Jensen 2003).

Heil (2000) investigated the propagation of a 2D bubble into a liquid-filled,
flexible channel at finiteRe. His numerical solution, using coupled finite-element
discretizations of the free-surface Navier-Stokes equations and the Lagrangian wall
equations, yields results atRe= 0 that compare well to those in Gaver et al. (1996).
For 0< Ca< 2 and fixed values of the ratioRe/Caranging between 0 and 10, fluid
inertia shifts thePbH/σ − Ca curve to higher pressures, approximately doubling
the required pressure forRe= 200,Ca = 2. AsReincreases in the peeling regime,
low Bernoulli pressures influence the bend in the wall shape in the region ahead of
the meniscus, and the bubble tip can become indented. Subsequently, this method
was extended to describe the propagation of a 3D bubble into a nonaxisymmetric
buckled tube at zeroRe(Hazel & Heil 2003). Pushing and peeling solutions arise
again: Remarkably, the 3D computations predict aPbH/σ − Ca relationship very
similar to that identified using 2D models.

4.3. Liquid Plug Flows

Although the above models treat an advancing air finger, there are many instances
where a liquid plug propagates in a flexible tube. Howell et al. (2000) modeled the
quasi-steady propagation of a liquid plug through an elastic tube with a preexisting
film, as one may find in airways. At low plug propagation speeds (Ca ¿ 1), the
analysis leads to a general form of the Landau-Levich equation modified for flexible
walls that displace radially inward in the region of the plug. Asymptotic forms of
the pressure drop across the plug and the ratio of the deposited film thickness to tube
radius show aCa2/3-dependence. For weak longitudinal wall tension and small
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wall compliance, both the wall displacement and the air-liquid interface curvature
have the sameO(Ca1/3) axial boundary-layer thickness. For stronger wall tension,
the wall boundary layer is significantly larger than the interfacial layer, requiring
intermediate matching of these regions. The theory identifies the critical imposed
pressure drop above which the bolus will eventually rupture because it deposits
a thicker film than the precursor layer it picks up. The issues pertaining to liquid
plug propagation and rupture are important for lung airway reopening phenomena.

4.4. Flow from Imposed Wall Stretch

Breathing motion of airway walls can move mucus. Espinosa & Kamm (1997)
presented a mathematical model of a Newtonian fluid layer that starts with a
uniform thickness and surfactant distribution as it rests on an extensible mem-
brane. The membrane undergoes longitudinal cycling and the strain increases
linearly along the wall so that there is a stiffer end (proximal airways) and a
more flexible end (distal airways). Strain gradients induce surfactant concentra-
tion gradients that drive a Marangoni flow. Over the first imposed cycle they find
that liquid transport toward the stiffer end (clearance) has an optimal frequency
with maximal surface velocities in the range of 0.05 mm/sec, compared to 0.2
mm/sec produced by ciliary mechanisms. Increased strain amplitude diminishes
transport and, in some cases, reverses the flow direction toward the distal end.
Subsequently, Halpern et al. (submitted for publication) considered a cyclically
stretching model of a branching airway network for surfactant transport into the
lung, as may occur in surfactant replacement therapy. By fixing the film thickness
and fluid pressure at both ends of the domain, and imposing a higher surfactant
concentration at the proximal end, their model predicts that transport of surfactant
into the lung is enhanced for larger strain amplitudes and frequency, though the
latter is less important. The effect of frequency found in that model is opposite
to the results in Bull & Grotberg (2003), where surfactant spreading over a thin
liquid film coating a flexible sheet was studied. The film was contained within
a cylindrical, flexible, vertical barrier (a well), and surfactant was introduced in
the center region of the well. The sheet was stretched biaxially at different fre-
quencies and the boundary conditions on the surfactant were no flux at the center
and at the bounding well barrier. Under these conditions, increasing frequency re-
duces the overall Marangoni effect, and this is consistent with their accompanying
theory.

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Figure 5 Time-averaged streamlines of an oscillatory, alveolar flow described in
bipolar coordinates. For fixed remaining parameters, the effect of surfactant is shown
as a function of sorption parameter K: (a) K = 0 (insoluble surfactant), (b) K = 0.8,
and (c) K = 1.0. The results are only drawn in a half domain of an alveolus due to the
symmetry. For an insoluble surfactant as in (a), there is a clockwise, steady vortex. As
K increases the structure can change to include three vortices (b), or even a saddle-point
(c). From Wei et al. (2003).
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At a smaller scale, the effect of imposed oscillations on alveolar liquid transport
is important for local homeostasis. Podgorski & Gradon (1993) presented a flow
model, based on earlier work (Gradon & Podgorski 1989), that is a liquid-lined,
oscillating spherical cap whose opening is attached to an airway. An insoluble
surfactant occupies the interface and the conditions at the opening are that surfac-
tant and fluid may enter or leave the alveolus. The model predicts that fluid and
surfactant will exit the alveolus due to a resulting Marangoni flow and, surpris-
ingly, increasing fluid viscosity will increase the net outflow. Thus the alveolus
is self-cleansing, though the cleansing is complete in this nonperiodic approach.
A model that enables a periodic state, so that removed surfactant is replaced, is
found in Zelig & Haber (2002). Their approach is to employ a source term in the
surface transport equation for the insoluble surfactant. For alveoli that are sur-
rounded by other alveoli, it can be more instructive to analyze a system where
fluid outflow per cycle is negligibly small because there is no preferred direction,
as occurs with the airway-attached alveolus. For thin liquid films in such a model,
Wei et al. (2003) showed that time-averaged velocities provide a steady-streaming
flow, which recirculates in the alveolus (Figure 5). The patterns can have multiple
vortices whose size and direction depend on the system parameters. Thicker films
enable more types of patterns, particularly as the inspiratory to expiratory time ratio
changes.

5. OUTLOOK

Because of their complexity, the rich range of associated phenomena, and their
biological relevance, studies of flow-structure interactions will remain at the heart
of much of physiological fluid mechanics. Hopefully the problems described here
illustrate the interest and the challenge of the field. Despite intensive investigation,
the multiple mechanisms underlying the generation of instabilities in single-phase
flow through flexible tubes (such as found in the Starling Resistor) remain incom-
pletely understood. Present computational and asymptotic results give us only iso-
lated glimpses of behavior in limited regions of parameter space, but emphasize the
importance of global conditions. We must await more systematic investigations that
will reveal generic relationships and phenomena relevant to experiments, which
are necessarily 3D, and to physiological applications, for which the mechanical
properties of tissues must be carefully accounted for. (Measurements of tissue
deformability have not kept pace with the remarkable recent advances in imaging
techniques allowing measurements of the geometry of an individual’s blood ves-
sels or airways.) Similarly, studies of topics such as airway closure and reopening
have focused up to now on highly idealized model systems. While these have
proved invaluable in identifying fundamental fluid-mechanical phenomena, there
remains a considerable gulf between the predictions of these models and the likely
behavior of real airways. New experiments giving insights into in vivo conditions,
and new efforts to extend the capacity of existing models, are needed to bridge this
divide.
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