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Pulsed field gradient NMR is a well-established technique for the determination of self-diffusion coeffi-
cients. However, a significant source of systematic error exists in the spatial variation of the applied
pulsed field gradient. Non-uniform pulsed field gradients cause the decay of peak amplitudes to deviate
from the expected exponential dependence on gradient squared. This has two undesirable effects: the
apparent diffusion coefficient will deviate from the true value to an extent determined by the choice
of experimental parameters, and the error estimated by the nonlinear least squares fitting will contain
a significant systematic contribution. In particular, the apparent diffusion coefficient determined by
exponential fitting of the diffusional attenuation of NMR signals will depend both on the exact pulse
widths used and on the range of gradient amplitudes chosen. These problems can be partially compen-
sated for if experimental attenuation data are fitted to a function corrected for the measured spatial
dependence of the gradient and signal strength. This study describes a general alternative to existing
methods for the calibration of NMR diffusion measurements. The dominant longitudinal variation of
the pulsed field gradient amplitude and the signal strength are mapped by measuring pulsed field gradi-
ent echoes in the presence of a weak read gradient. These data are then used to construct a predicted sig-
nal decay function for the whole sample, which is parameterised as the exponential of a power series.
Results are presented which compare diffusion coefficients obtained using the new calibration method
with previous literature values.

� 2009 Published by Elsevier Inc.
1. Introduction

The use of pulsed field gradients (PFGs), most commonly in a
spin or stimulated echo, is a powerful technique for NMR diffusion
studies in liquid samples [1]. In contrast to other experimental
methods, such as isotopic tracer techniques [2], experiments are
rapid, economical and flexible. Typically a series of echo spectra
is recorded with increasing PFG amplitude, and the resulting decay
of the peak area is fitted to the Stejskal–Tanner equation [1]:

SðGÞ ¼ S0 exp �Dc2G2d2D0
h i

ð1Þ

where S is the signal amplitude, S0 is the signal amplitude in the ab-
sence of diffusion, D is the diffusion coefficient, d is the gradient
pulse width, c is the magnetogyric ratio, G is the gradient amplitude
and D0 is the diffusion time corrected for the effects of diffusion dur-
ing the gradient pulses.
Elsevier Inc.

. Morris).
Accurate measurements of diffusion have a wide range of uses
[3]. One of the more recent, and potentially important, uses is in
diffusion-ordered spectroscopy (DOSY) [4–8]. DOSY uses differ-
ences in diffusion coefficient to separate the NMR signals of differ-
ent components in a mixture, presenting the results in the form of
a synthetic multidimensional spectrum with diffusion as an added
dimension. The widths of the signals in the diffusion dimension are
governed by the standard errors estimated in the fitting of the sig-
nal attenuation to its theoretical form (e.g. Eq. (1)), and ideally
should be dominated by random errors. Any systematic errors will
broaden the peaks constructed in the diffusion domain (although
in favourable circumstances this need not necessarily prevent the
detection of small differences in diffusion between different
species).

As with any experiment, the accuracy and precision of the diffu-
sion coefficient obtained by fitting NMR signals are critically depen-
dent on the quality of the data. Improvements in hardware, such as
the use of actively shielded coils to avoid eddy currents, have greatly
improved the quality of the experimental data available. Advances in
pulse sequences have further reduced systematic sources of error
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such as those originating from disturbances to the static magnetic
field and to the field/frequency lock [8,9]. Many – but not all – of
the remaining deviations from ideal instrumental behaviour, such
as inconsistencies in radio frequency pulse amplitude and phase,
and lineshape errors, can be corrected for by reference deconvolu-
tion [10,11]. There remain, however, a number of other important
factors. Accurate control of sample temperature is critical: diffusion
coefficients typically increase by several percent for each degree rise
in temperature, so sample temperature calibration, stability and
uniformity are all important. Any bulk movement of the sample or
probe hardware will confound diffusion measurements, so it is vital
either that thermal convection be avoided or that its effects be com-
pensated for [12–14]. Where very concentrated samples are used,
radiation damping can have florid effects; again, appropriate choice
of pulse sequence [15] can allow accurate results to be obtained for
such systems. A final, and in many cases dominant, source of system-
atic error is the spatial non-uniformity of the pulsed field gradients
used. Gradient non-uniformity has long been known to be a problem
in diffusion measurement by NMR [6,16,17]; a clear explanation of
its effects, and one effective route to compensating them, was pre-
sented some time ago by Damberg, Jarvet and Gräslund [17] (abbre-
viated below as DJG). This paper gives an extended analysis,
describes an alternative and slightly more general approach to com-
pensating for non-uniform gradients that has proved very effective
[8,15,16,18–26], and examines some of their practical
consequences.

In order to measure absolute diffusion coefficients by PFG NMR,
a calibration of the pulsed field gradient strength is needed. This is
commonly carried out by measuring the experimental attenuation
of the echo signal as a function of nominal pulsed field gradient
amplitude for a species of known diffusion coefficient (often
H2O), and back-calculating the correction factor between the nom-
inal and actual gradient amplitudes. (Holz and Weingärtner have
published a very useful collection of data on accurately known dif-
fusion coefficients in different ranges [27].) Measurement of the
frequency width of the spectral profile obtained for a sample of
known length under a given read gradient is occasionally put for-
ward as an absolute calibration method, but it suffers from distor-
tion of the spectral profile caused by magnetic susceptibility
discontinuities and fails to take into account the effects of gradient
non-uniformity, and is only to be recommended for calibration of
very high gradients [28].

Calibrating diffusion measurements by direct comparison be-
tween an unknown and a reference is a viable strategy for accurate
measurements, but only if (a) the same gradient pulse widths are
used for both measurements, (b) the field gradient system is elec-
trically linear (i.e. the actual gradients produced are directly pro-
portional to their nominal strengths) and (c) exactly the same
diffusional attenuation is achieved for both measurements.
Requirement (c) is needed because the spatial non-uniformity of
the field gradients means that the experimental signal decay devi-
ates from the form of Eq. (1), as explained below. Requirement (b)
is a good approximation on most modern spectrometer systems,
except where a diode box or similar device is used (see below).
Requirement (a) arises because finite gradient pulse rise and fall
times mean that the area of a gradient pulse is not directly propor-
tional to its nominal duration. The net effect of (a)–(c) is that accu-
rate measurements by the comparison method require both the
availability of a reference material with a diffusion coefficient in
the right range [27], and very careful choice of experimental
conditions.

Modern actively shielded gradient coils give excellent perfor-
mance, but their design inevitably requires compromises to be
made between different aspects of their performance. In particular
there appears to be a trade-off between the speed and accuracy
with which gradients may be switched on and off, the level of gra-
dient noise (field fluctuations caused by the gradient amplifier
even when quiescent), and the uniformity of the gradients pro-
duced. Thus the probe in this study with the most uniform gradient
also had the highest level of gradient noise, sufficiently high that
the lineshape of high resolution signals was irreproducible and
the resolution degraded. The probe manufacturer’s recommended
solution was to fit a ‘‘diode box”, containing crossed diodes, be-
tween the gradient amplifier and the probe. This greatly reduces
the lineshape disturbances but degrades the electrical linearity of
the gradient system severely at low gradients, and is not appropri-
ate for accurate measurements of diffusion.

All probes suffer to a greater or lesser extent from gradient non-
uniformity; many show a field gradient that is strongest close to
the centre of the active volume of the coil and falls off to either
side. One drastic measure to reduce the effects of non-uniformity
is to use either slice selection [4,29,30] or a very short sample
[31–33] to restrict the signals measured to a small volume over
which the field gradient variation is small. Unfortunately both in-
volve a major sacrifice in signal-to-noise ratio, as well as introduc-
ing problems where the diffusion distance is not small compared to
the slice thickness, and their use is probably best limited to exper-
iments where the analysis method used requires strict adherence
to the exponential attenuation as a function of gradient squared
seen in Eq. (1) [4]. Even with the best available susceptibility
matching, the use of very short samples also degrades the signal
lineshape considerably.

As has been pointed out [6,17], most notably by Damberg et al.
[17], the most effective solution to the problems caused by non-
uniform gradients is to quantify their effects and to include them
explicitly in the analysis of experimental data by modifying the
Stejskal–Tanner equation. Modification is necessary because differ-
ent parts of the sample experience different gradients, and hence
their signals attenuate as a function of nominal gradient at differ-
ent rates, so that the net signal from the sample shows a diffusional
attenuation which deviates increasingly from exponential as the
attenuation increases. Adapting the fitting function used to deter-
mine the diffusion coefficient allows full sensitivity to be retained,
which is vital in diffusion-ordered spectroscopy, and removes the
severe limitation (c) on accurate diffusion measurements noted
above. The net result is a fitting process that returns accurately cal-
ibrated diffusion coefficients and standard errors that more closely
reflect random, as opposed to systematic, sources of error. Correc-
tion for the effects of gradient non-uniformity is particularly
important in the use of multiexponential fitting in DOSY, where
any experimental deviation from Eq. (1) will appear to the fitting
algorithm as a spurious extra component [21], and in multivariate
analysis of DOSY data by methods such as DECRA, CORE or SCORE
[4,22,23,25,34,35].

There are two common approaches to determining the form of
modified Stejskal–Tanner equation required. The first, direct,
method [17] is simply to measure the diffusional attenuation as
a function of the square of nominal gradient strength for a sample
of known diffusion coefficient, and then to fit this to an appropriate
functional form (for example, the exponential of a power series [6],
or the difference of two error functions [17]) with sufficient vari-
able parameters to characterise the deviations seen. The second,
indirect, method is to map the spatial variation of the signal and
gradient strength across the sample, and then to calculate the ex-
pected form of the diffusional attenuation for the whole sample,
which can then be fitted as in the direct method. The direct method
requires great care if accurate parameters are to be obtained, be-
cause of the need to eliminate other systematic sources of error
such as temperature drift or unwanted coherence transfer path-
ways, while the indirect method is also time-consuming and re-
quires significantly more programming. Here we concentrate on
the indirect method, partly because it allows experimental verifi-
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cation that the deviations from the Stejskal–Tanner equation seen
are indeed dominated by the spatial non-uniformity of the gradi-
ents (and not by some other source of error such as electrical non-
linearity) but mostly because the intermediate data obtained on
the spatial variation of gradient strength are required for the anal-
ysis of results from spatially resolved experiments such as the
Zangger–Sterk method for pure shift DOSY [24].

In this paper, the indirect calibration method above is described
in detail, examples of its application are given, and some of the
general implications of non-uniform gradient effects for practical
DOSY and diffusion measurement experiments are discussed. In
particular, it is noted that the correlation between the spatial var-
iation of the radiofrequency field B1 and that of the pulsed field
gradient can make apparent diffusion coefficients measured by
NMR vary according to the pulse width calibration used.

2. Theory

2.1. Effect of gradient non-uniformity on signal attenuation

Diffusion measurements by PFG NMR typically fit the decay of
signal amplitude S as a function of gradient pulse area squared to
the Stejskal–Tanner equation (Eq. (1)). For a simple spin or stimu-
lated echo sequence using two rectangular gradient pulses which
have duration d and whose midpoints are a time D apart, the cor-
rected diffusion delay D0 = D � d/3. If shaped pulses [36], some-
times used to reduce the effects of eddy currents, are employed
in the pulse sequence, two modifications are needed to the Stejs-
kal–Tanner equation: the product Gd needs to be replaced by the
area of the shaped gradient pulse (2 Gd/p for a half-sine pulse),
and the correction D0 to allow for diffusion during the gradient
pulses changes (D0 = D � d/4 for two half-sine pulses).

Unfortunately the pulsed field gradient hardware typically used
in NMR does not, as noted above, generate gradients that are per-
fectly uniform over the active sample volume, and the net experi-
mental signal decay therefore is not accurately described by Eq.
(1). Forcing a fit of such data to Eq. (1) has two major conse-
quences. First, as the signal attenuation increases, so does the devi-
ation from Eq. (1); as a result, the diffusion coefficient obtained by
fitting the decay to Eq. (1) varies systematically depending on the
extent of attenuation used. Second, the error estimate obtained
from the fitting process is increased, degrading diffusion resolution
in experiments such as DOSY.

If the spatial variation of signal strength S(r) in the absence of
diffusion and that of gradient strength G(r) are both known, then
the total signal Stotal obtained from the sample under given exper-
imental conditions may be found by integrating over r:

Stotal ¼
Z

SðrÞ exp½�Dc2G2ðrÞd2D0�dr ð2Þ

In practice the gradient strength is defined experimentally in terms
of a spectrometer parameter C, a nominal gradient strength that
may be defined in gradient units, as a percentage of maximum gra-
dient amplitude, or as a number of DAC points. If the gradient
amplifier and coil system is electrically linear, then the gradient
at a given point is given by:

GðrÞ ¼ bCgðrÞ ð3Þ

where b is a proportionality constant and g(r) a shape factor, both spe-
cific to the particular probe used. Substituting Eq. (3) into Eq. (2) gives
the total signal as a function of nominal gradient strength C:

StotalðCÞ ¼
Z

SðrÞ exp½�Dc2b2C2g2ðrÞd2D0�dr ð4Þ

The net effect is that the signal decay is no longer a Gaussian func-
tion of C; the two practical issues are first, how to measure the spa-
tial variation of signal and of gradient, and second, how best to
represent this decay function in a form suitable for fitting experi-
mental attenuation data to.

2.2. Spatial mapping of sample signal and gradient

In principle G(r) and S(r) can be mapped in 3D by MR imaging
techniques, but in practice a 1D mapping along the sample long
axis (z) suffices for high resolution NMR probes, where the domi-
nant variation both in signal and in gradient is along z. Measuring
the attenuation of the signal profile obtained by performing a PFG
stimulated echo experiment on a sample of known diffusion coef-
ficient using a weak read gradient during data acquisition gives a
series of signal profiles S(C,f), where f is the Larmor frequency
at position z, which characterises the diffusional decay at different
positions z in the sample. These data may then be fitted to Eq. (1) to
find the product bg(f). This is most conveniently done by choosing
a trial value for b (typically based on the spectrometer manufac-
turer’s recommended calibration method), and determining an
apparent diffusion coefficient Dapp for each value of f. The function
g(f) is then given by

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fDappðfÞ=Dog

p
, where Do is the known diffu-

sion coefficient of the calibration sample used. A convenient cali-
brant is a dilute solution of H2O in D2O; this avoids radiation
damping effects. Accurate values of D have been reported in the lit-
erature for the diffusion coefficients of H2O/D2O mixtures [27]. Be-
cause the gradient varies as a function of position, f is not linearly
related to position z, but within the active volume of the radiofre-
quency coil its variation with z is monotonic and the two may be
interconverted as follows:

zðfÞ ¼
Z

2p
cgðfÞ df ð5Þ

This allows g(f) and S(f) to be converted into functions of z if re-
quired. This can be useful for characterising and comparing probes,
but is not essential for analysing the consequences of non-uniform
gradients, since the integral over r in Eq. (4) can be performed over
f:

StotalðCÞ ¼
Z

Sð0; fÞ exp �Dc2b2C2g2ðfÞd2D0
h i

df ð6Þ

On the fringe of the sample active volume the signal is typically
too poor to give a reliable estimate of g(f). In practice, it is therefore
desirable to extrapolate the measured g(f) from the region of
strong signal to cover the outer edges of signal profile. This can
conveniently be done by representing g(f) as a power series in f:

gðfÞ ¼ go �
XN

n¼1

gnf
n ð7Þ

This power series is useful in the analysis of the results of spatially
resolved diffusion experiments [24].

The decay of the total signal as a function of C can now be eval-
uated by numerical integration:

StotalðCÞ ¼
Z

Sð0; fÞ exp �Dc2b2C2d2D0 go �
XN

n¼1

gnf
n

 !" #
df ð8Þ

In principle this information is of course available experimentally,
from the integrals of the signal profiles, but in practice for attenua-
tion beyond 100� the measured signals are significantly distorted
by noise and by leakage of signal through unwanted coherence
transfer pathways. Calculating the signal decay using data from
mapping experiments allows Stotal(C) to be determined reliably
even for relatively high levels of attenuation. The two datasets
needed for the evaluation of Eq. (8) are the gradient coefficients
of Eq. (7), and the signal profile S(0,f). The latter is available from
the fitting of S(C,f) to Eq. (1), which yields a decay constant and
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an amplitude for each point on the signal profile; in practice a slice
through S(C,f) at low C, where diffusional attenuation is negligible,
serves equally well.

2.3. Parameterising experimental signal decay

Having calculated or measured Stotal(C) it remains to approxi-
mate this in a functional form convenient for fitting experimental
diffusion decays. Here, two related approaches have been pro-
posed, which differ in how the decay function is parameterised.
In the model of DJG, the signal strength as a function of relative
gradient is represented by a truncated linear distribution defined
by minimum and maximum values of the gradient [17]. This ap-
proach corresponds to a physically unrealistic form of G(z), with
a discontinuous slope at z = 0 (see Fig. 4), but is perfectly practical
and gives a good description of the distribution of signal as a func-
tion of gradient strength for mild non-uniformity. Integrating over
all values of gradient leads to the expression:

StotalðCÞ
Stotalð0Þ

¼ expð�gC2g2
minÞ � expð�gC2g2

maxÞ
2gC2ðgmax � gminÞ

2

� gmin

ffiffiffiffi
p
p
½erfðgmaxC

ffiffiffigp Þ � erfðgminC
ffiffiffigp Þ�

2Cðgmax � gminÞ
2 ffiffiffigp ð9Þ

where g = Dc2d2D0.
For the past 8 years an alternative method has been used in this

laboratory in which net signal decay for the whole sample volume
is represented as the exponential of a power series [6,8]:

StotalðCÞ
Stotalð0Þ

¼ exp �
XN

n¼1

cngnb2nC2n

" #
ð10Þ

The calibration process enables the theoretical form of the signal
decay under the mapped gradient shape to be calculated even for
very high levels of attenuation. Fitting the signal decay Stotal(C) to
Eq. (10) produces probe-specific fit coefficients, just as in the DJG
method but with the ability to accommodate more severe gradient
non-uniformity. A further minor advantage of Eq. (10) over Eq. (9) is
that the coefficient c1 has a simple physical significance, being the
square of the signal-weighted average of g(f) over the sample, i.e.
180o

RF

RF

Gz

Gz

a

b

δ/2

Δ1

90o

δ

90o
φ1 φ2 φ

φ1 φ2 φ3

Fig. 1. Diffusion measurement pulse sequences, modified to include a weak read gradie
where D and d are the diffusion delay (the separation between the midpoints of the
respectively; here the phase cycling (Table 1) depends on whether the stimulated antiec
gradient double stimulated echo (PFGDSTE) convection-compensated sequence, describ
gradient pulse width. Gradient pulses with vertical arrows indicate gradient levels whi
allowed after each gradient pulse for gradient and field stabilisation.
the ratio of the actual gradient averaged over the sample to the
nominal gradient strength C. The remaining coefficients character-
ise the deviation from mono-exponential decay.
3. Experimental

Measurements were recorded on three Varian spectrometers;
an INOVA 500 and 400, and a UNITY 500. Five different 5 mm
probes were used, each with actively shielded gradient coils, to al-
low comparison between probes of different types. On the INOVA
400, two different probes were used. Probe 1 was a standard Varian
broadband indirect detection probe with a gradient coil delivering
nominal gradients of up to 30 G cm�1; the second was an exten-
sively modified direct detection broadband probe (probe 2) with
a picaresque history [20], equipped with a 60 G cm�1 gradient coil.
On the UNITY 500 spectrometer a 1H/13C/15N triple probe (probe 3)
with a gradient coil delivering nominal gradients of up to
30 G cm�1, and a Nalorac dual broadband/1H probe (probe 4) with
a nominally 50 G cm�1 gradient coil, were used. Finally, on the
INOVA 500, a triple resonance cryoprobe (probe 5) with a gradient
coil delivering nominal gradients of up to 60 G cm�1 was used. All
samples were in standard 5 mm NMR tubes filled to depths of 50–
80 mm. Prior to acquisition, all samples were shimmed using man-
ual xy shimming and automated z-gradient shimming on the sol-
vent deuterium signal [37]. All experiments were carried out
without sample spinning, with the sample temperature regulated
at 25 ± 1 �C; the exact temperature produced by the variable tem-
perature unit was calibrated using a standard test sample of pure
ethylene glycol. The airflows to the probe were passed through
copper pipe filled with lead shot, held within an insulated bucket
of water at ambient temperature, to minimise the effects of varia-
tion in room temperature [38].

Signal strength and gradient amplitude were mapped as a func-
tion of z for all five probes, using the Oneshot pulse sequence [8]
modified to include a read gradient Gr during signal acquisition
(Fig. 1a). The spectrometer operating frequency was set to be at ex-
act resonance for the calibrant signal with no read gradient ap-
plied; while not necessary for the correction of the effects of
gradient non-uniformity on conventional diffusion measurements
Δ

Δ2

Gr

Gr

3 φ4 φ5 φR

φ4 φ5 φR

nt Gr during acquisition for mapping experiments. (a) Oneshot [8] pulse sequence
rectangular gradient pulses) and the net diffusion-encoding gradient pulse width,
ho (solid line) or echo (dotted line) version of the sequence is used. (b) Pulsed field
ed in Section 3, where D1 and D2 are the two (equal) diffusion delays and d is the
ch are changed to vary the amount of diffusion encoding; a delay of up to 2 ms is



Table 1
(a) Phase cycling for the Oneshot pulse sequence of Fig. 1a, and (b) for the PFGDSTE
convection-compensated pulse sequence of Fig. 1b. Phases are notated as multiples of
90� (0 = 0�, 1 = 90�, 2 = 180�, 3 = 270�), with subscripts denoting repetition.

(a) Oneshot
U1 064164264364

U2 0123
U3 04142434

U4 0256125622563256

U5 016116216316

UR U1 � 2U2 + U3 �U4 + 2U5 (solid line)
UR 2U2 �U1 �U3 �U4 + 2U5 (dotted line)

(b) PFGDSTE
U1 0256125622563256

U2 016116216316 + 0123
U3 0123
U4 04142434

U5 064164264364 + 04142434

UR U1 �U2 �U3 + U4 + U5
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described here, it is essential if the calibration of the spatial depen-
dence of the gradient is to be used for other purposes such as pure
shift DOSY [24]. Much more extensive phase cycling than is usually
necessary – or indeed desirable – was performed, in order to avoid
the read gradient refocusing unwanted coherence transfer path-
ways, and care was taken with sequence timing to minimise the
need for 1st order phase correction of the signal profiles. In addi-
tion, signal and gradient were mapped for probe 1 using a convec-
tion-compensated pulsed field gradient double stimulated echo
sequence [12,13,39], again with a read gradient during acquisition
(Fig. 1b).

These two pulse sequences were chosen as representative of
typical sequences used in DOSY and for diffusion measurements.
The first is a general-purpose sequence, a more sophisticated form
of the bipolar pulse pair stimulated echo (BPPSTE) sequence [9];
the second is a common (but not always a wise) choice where ther-
mal convection of the sample is either a proven or a potential prob-
lem, but requires extensive phase cycling, yields poorer signal
lineshapes, and suffers a twofold sensitivity penalty compared to
the Oneshot sequence. For each experiment, between 10 and 20
signal profiles were measured for nominal gradient strengths Cb,
incremented in equal steps of (Cb)2, from ca. 0.5 G cm�1 up to
the point of 30% signal attenuation. The total diffusion-encoding
gradient pulse duration d was 4 ms (i.e. for the Oneshot sequence
each individual pulse was of 2 ms duration, and for PFGDSTE
4 ms), and diffusion delays D of between 50 and 300 ms were used.
The nominal read gradient Gr during acquisition was of
0.05 G cm�1, corresponding to a signal profile width of approxi-
mately 350 Hz for probes which have a sensitive volume about
17 mm high. Data were acquired for probes 1, 3 and 5 using sample
1 (a standard doped water sample containing 1% H2O in D2O, 0.1%
sodium 3-(trimethylsilyl)-1-propanesulphonate reference (DSS)
and 0.1 mg/ml GdCl3), and for probes 2 and 4 using sample 2
(100% H2O).

Free induction decays were zero-filled once and weighted using
a Gaussian function with a time constant of 0.1 s before Fourier
transformation. The baselines of the spectra were then corrected
using a cubic spline function. Corresponding points (400 in total)
at regularly spaced frequency intervals on each profile were fitted
to Eq. (1) to give the gradient shape function g(f) and the signal
distribution S(f). The theoretical form of the signal decay for the
whole sample was then constructed by numerical integration of
Eq. (8), and parameterised by fitting the power series model of
Eq. (10) with two to four terms. All of the above manipulations
were carried out using in-house modifications to the spectrometer
Vnmr 6.1C software.

In order to compare the measured experimental signal attenu-
ation with that derived from the signal and gradient mapping data,
a reference dataset was acquired for probe 1 with the Oneshot se-
quence, using 100 equal increments in gradient squared for nomi-
nal gradient amplitudes from 0.5 to 19.6 G cm�1. For each gradient
amplitude, 16 transients were acquired with a recycle time of 1.2 s;
the total diffusion-encoding gradient pulse duration d was 4 ms,
and a diffusion delay D of 100 ms was used. The signal integral
as a function of gradient squared was tabulated, and again param-
eterised by fitting to Eq. (10).

The axial variation B1(f) of the radiofrequency field was deter-
mined by measuring the free induction decay, recorded under a
read gradient of nominal strength 0.05 G cm�1, following a single
pulse with a 20� flip angle. As a consequence of the reciprocity the-
orem [40], the square root of the signal profile is directly propor-
tional to the required function B1(f), the constant of
proportionality being easily found by comparing profiles obtained
with different flip angles. B1(f) may be converted into B1(z) using
the relationship of Eq. (5). The former was used to simulate shapes
of signal profile S(f) expected for different nominal pulse flip an-
gles for the Oneshot and PFGDSTE convection-compensated pulse
sequences of Fig. 1a and b.

A series of diffusion measurements on pure compounds cover-
ing a large range of diffusion coefficients was made using probe
1, using the PFGDSTE convection-compensated sequence (Fig. 1b)
with no read gradient. Typically, 10 values of nominal gradient
strength between ca. 0.1 and 13.7 G cm�1 were used. The gradient
pulse duration d was 4 ms and the maximum diffusion delay D
500 ms. Peak integrals as a function of gradient strength were fit-
ted to Eq. (10) to determine the diffusion coefficient and its esti-
mated standard error. In addition, nine diffusion measurements
were made on the doped water sample, varying the nominal flip
angle from 70� to 110� using probe 1 with the Oneshot sequence
(Fig. 1a) with no read gradient. The nominal 90� pulse width was
calibrated conventionally by assigning a flip angle of 180� to the
pulse width yielding zero net signal. Ten values of nominal gradi-
ent amplitude were used from 0.98 to 9.8 G cm�1. The gradient
pulse duration d was 4 ms and the diffusion delay D was 200 ms.
Peak integrals as a function of gradient strength were fitted to a
single exponential (Eq. (1)) and to Eq. (10) to determine the diffu-
sion coefficient D and its estimated standard error.

Gradient mapping experiments are significantly more demand-
ing than normal diffusion measurements. As already mentioned,
the potential for the read gradient to refocus unwanted coherence
transfer pathways in a series of echoes during the acquisition of the
free induction decay necessitates extensive phase cycling, although
this requirement can be relaxed somewhat if gradient pulse ampli-
tudes are tailored to minimise potential refocusing. Table 1a and b
lists the extended phase cycles used for the Oneshot and PFGDSTE
experiments, respectively. Because the long, low-level gradient
pulse during acquisition dephases the deuterium lock signal, it is
not possible to maintain field-frequency lock, making field stability
critical. Variations in static field strength B0 have little impact on
the middle part of the gradient map, but the steep decline in signal
at either side of S(f) means that small changes in B0 have a big ef-
fect on the apparent diffusion coefficient at the edges of the map
g(f). Using a high read gradient reduces the significance of field/
frequency fluctuations, but maximises the potential for unwanted
echoes. The relatively weak signal at the edges of the profile means
that any error in spectral baseline will cause a large change in
apparent diffusion coefficient, distorting the gradient map ob-
tained. Care must therefore be taken to minimise 1st order phase
shifts in the profile by ensuring that the timing of the start of data
acquisition is exact. Finally, any discrepancy in the net areas of the
diffusion-encoding and -decoding gradient pulses will lead to posi-
tion-dependent phase errors in the signal profile, and should be
corrected for by adjusting the amplitude and or duration of one
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Fig. 3. Profiles of relative signal S(f) (solid line) and gradient strength squared g2(f)
(dashed line) as a function of frequency in Hz calculated from the data of Fig. 2 as
described in the text.
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of the pulses. In the experiments reported here such corrections
were typically of the order of 0.1% or less.

Fortunately, where the signal profiles obtained have high sig-
nal-to-noise ratio, as is usually the case, it is possible to circumvent
the last two requirements, which affect the phases of the signal
profiles, by adapting the sequence of Fig. 1 to acquire the signal
profile data in a whole rather than a half echo, and then to carry
out the data analysis using absolute value data. The requirement
of high signal-to-noise ratio is necessary because in absolute value
display mode the noise is always positive, and hence biases the re-
sults slightly. In the work described here the sequences of Fig. 1
were used and the analysis carried out in phase sensitive mode
to get the highest available accuracy, but for routine use the abso-
lute value approach appears to be simple and robust.

4. Results

4.1. Gradient mapping

Fig. 2 shows the signal profiles recorded as a function of diffu-
sion-encoding gradient for probe 1 using the modified Oneshot se-
quence of Fig. 1a but with nominal pulse flip angles of 80� and 160�
rather than 90� and 180� (see Section 4.2). The read gradient Gr is
used to encode the magnetisation spatially so that signal attenua-
tion as a function of position z can be determined. Assuming that
the rate of diffusion is uniform across the sample (in practice,
assuming a uniform sample temperature), the gradient strength
as a function of z was determined by fitting corresponding points
on each profile to the Stejskal–Tanner equation (Eq. (1)) using
the nominal gradient strengths G defined by the manufacturer’s
initial calibration method (measurement of the signal profile width
at 20% amplitude under a known read gradient). This yielded an
apparent diffusion coefficient Dapp(f) as a function of position z;
dividing Dapp(f) by the known [2] diffusion coefficient at 25 �C
for 1% H2O/D2O of 1.91 � 10�9 m2 s�1 gave the relative gradient
strength squared g2(f) shown, together with the signal amplitude
S(f), in normalised form in Fig. 3.
Hz-200 -150 -100 -50  0 50 100 150 200 

Fig. 2. Signal profiles for increasing diffusion weighting, measured with the
modified Oneshot pulse sequence shown in Fig. 1a. Data were acquired at
400 MHz using a standard doped water sample (1% H2O in D2O, 0.1 mg/ml GdCl3,
0.1% sodium 3-(trimethylsilyl)-1-propanesulphonate) on probe 1, with 10 nominal
gradient pulse amplitudes equally spaced in gradient squared between 0.49 and
9.81 G cm�1. 256 transients of 2048 complex points were averaged for each
gradient value, in a total time of 100 min.
The ‘‘horns” of the measured signal profile arise because the
gradient is weaker at the edges of the active region of the sample
volume, so the signal from a given slice of sample is compressed
into a narrower frequency range. The horns become more pro-
nounced in the lower profiles of Fig. 1 because the sample regions
with weakest gradient amplitude experience the slowest attenua-
tion. From the data of Fig. 3, the profiles of gradient G(z) and signal
S(z) as a function of position z in Fig. 4 were calculated using Eq.
(5). Fig. 4 also shows the corresponding variation of gradient
strength as a function of position G(z) that would be assumed by
the DJG model (also used by Zhang [30]) if the B1 homogeneity
were perfect.

The relative gradient as a function of frequency g(f) (the square
root of the data of Fig. 3) was fitted to an 8th order power series in
f using Eq. (7). Numerical integration of Eq. (8) using the gradient
coefficients of Eq. (7) and the normalised first signal profile of Fig. 2
(which has negligible diffusional attenuation) was used to calcu-
late the signal decay as a function of gradient strength for the
whole sample volume down to 104-fold attenuation. This decay
was then fitted using the function described by DJG (Eq. (9)), and
using Eq. (10), in each case yielding two coefficients that are char-
acteristic of the probe and pulse sequence used to acquire the data.
The quality of fit of the calculated signal decay obtainable with the
two different model functions can be seen in the semilog plot of
Fig. 5, which compares pure exponential fitting (Eq. (1)), the DJG
model function (Eq. (9)), and the exponential 2nd order power ser-
ies (Eq. (10)). Also included in Fig. 5 are experimental data points
for attenuation of the water signal; these agree well with the cal-
culated form of the signal decay over the full range down to 103-
fold attenuation (beyond which S/N becomes a limiting factor),
0 -2.5 -5 5.755.25.7-

0.2 

0.4 

0.6 

0.8 

1 

mm

R
el

at
iv

e 
G

ra
di

en
t a

nd
 S

ig
na

l 

Fig. 4. Profiles of relative signal S(z) (solid line) and relative gradient strength g(z)
(short dashed line) as a function of position z in mm, calculated from the data of
Fig. 3 using Eq. (5), together with the model described by DJG for g(z) (long dashed
line).
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400 MHz operation and to include a gradient coil of maximum nominal gradient strength 60 G cm�1); (c) probe 3 (Varian 5 mm 500 MHz H/C/N triple probe, maximum
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cryoprobe, maximum nominal gradient strength 60 G cm�1). The midpoint of each signal profile is centred at z = 0.
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Fig. 6. Plot of relative signal strength against relative gradient strength for the
experimental data of Figs. 2–5 (solid line) and for the DJG model, which assumes a
triangular distribution for signal strength, with the fitting parameters gmin and gmax

used in Fig. 5.
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confirming that the measured z variation of the gradient amplitude
is sufficient to explain the observed deviation from the Stejskal–
Tanner equation. Fig. 6 compares the experimental distribution
of signal as a function of relative gradient strength of Eq. (10), con-
structed from the data of Figs. 2–4, with the truncated linear distri-
bution of the DJG model, obtained by fitting the calculated signal
decay to Eq. (9). The experimental distribution of signal strength
shows as expected that very little of the sample experiences a
weak gradient, and that the central part of the sample experiences
a strong uniform gradient, causing the pronounced cusp in Fig. 6.
The DJG model of the gradient shape g(z) corresponds to a triangu-
lar distribution of signal strength as a function of gradient strength,
rising linearly from zero at gmin to a maximum at gmax. This is not
physically realistic, but, as Fig. 5 shows, it still gives an excellent
representation of diffusional attenuation for a typical high resolu-
tion probe. In extreme cases of gradient non-uniformity, the more
flexible power series model of Eq. (10) should allow much more
accurate fitting of experimental data.

The mapping process was carried out for five different probes,
with the results shown in Fig. 7. Normalised signal (solid line)
and gradient (dashed line) profiles are shown for each probe, with
z = 0 defined by the midpoint of the signal profile in each case.
Probe 4 has the best gradient uniformity, but as noted earlier suf-
fers from significantly worse gradient noise – manifest as field
instability when the nominal gradient is zero – than the other
probes. For high resolution experiments other than diffusion mea-
surements the probe manufacturer advised the use of a diode box
with this probe. Probe 5, a cryoprobe, has good gradient uniformity
over most of the active region of the sample, but a very rapid fall-
off at the edges. This can lead to problems with water suppression,
because the field gradient at the fringes of the probe active volume
is too weak to give effective signal editing. Probes 1 to 3 share the
same basic design of coil, although probe 2 has twice the nominal
gradient strength, and hence have very similar gradient shapes
g(z). Probe 2 is much-modified and has a long and chequered his-
tory; the centre of its gradient coil is approximately 2 mm above
the centre of the active volume, resulting in a relatively weak gra-
dient at the bottom end of the sample. For this probe, using Eq. (10)
to 4th order gives significantly better correction for the effect of
non-uniform gradients than either Eq. (10) to 2nd order or the
DJG parameterisation of Eq. (9).

4.2. Effect of pulse calibration on diffusion measurements

As explained in Section 1, different regions of the sample con-
tribute differently to the net signal as the nominal pulse flip angle
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changes. To take an extreme example, if pulse widths were chosen
to give twice the nominal flip angle at the centre of the active vol-
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Fig. 8. Experimental profiles of relative signal S(f) as a function of frequency,
stacked vertically as a function of nominal pulse width for (a) (i) the Oneshot, and
(b) (i) the pulsed field gradient double stimulated echo (PFGDSTE) convection-
compensated sequence, together with (a) (ii) and (b) (ii) profiles calculated as
described in the text using the calculated B1(f) as a function of frequency for the
Oneshot and PFGDSTE sequences, respectively.
ume, the pulses of Fig. 1a and b would have flip angles of 180� and
360� and the centre of the sample would contribute no signal at all,
the maximum signal coming from the wings of the normal signal
profile where the radiofrequency field B1 has fallen to half the va-
lue at the coil centre. Fig. 8 shows the effect on the signal profile of
varying the nominal flip angle used for (a) the Oneshot and (b) the
PFGDSTE pulse sequence. Column (i) shows the experimental sig-
nal profiles for different nominal flip angles, and column (ii) the ex-
pected signal profiles calculated from the measured variation of B1

with z. The nominal flip angles shown are with respect to the con-
ventional pulse calibration, in which the pulse width yielding zero
net signal is assigned a flip angle of 180�. In practice the latter cri-
terion means that different regions of the sample contribute equal
and opposite signals at their pulse width; the centre of the sample
experiences a flip angle greater than, and the fringes of the sample
a flip angle less than, 180�.

The calculations of the profiles for the two different sequences
used the theoretical dependence of signal on actual flip angle
h(z), sin7h for the Oneshot sequence of Fig. 1a and sin5h for the
convection-compensated PFGDSTE sequence of Fig. 1b. The exper-
imental and calculated profiles are in good agreement, suggesting
that it should be possible to parameterise NUG correction accu-
rately for arbitrary pulse sequences using only the experimental
data for g(f) for a single pulse sequence and the measured B1(f).
For nominal flip angles in the range 70–90� the variation in the
shape of signal profile as a function of h is very small; the sine
terms restrict the changes to a slight flattening of the top of the
profile and widening of the shoulders as 90� is approached. Above
90�, however, the signal in the middle of the profile begins to fall
rapidly and hence the signal contribution made by the fringes of
the active volume, where the gradient is weakest, rises. The same
general trends apply for both sequences, but the effects are slightly
more serious for the Oneshot sequence because of the loss of refo-
cusing by the ‘‘180�” pulses.

The effect of the change in the relative contributions made by
the centre and the edges of the sample as the nominal flip angle
passes 90� is to weaken the overall diffusion weighting imparted
by the gradient pulses, as the sample fringes increase in impor-
tance. Fig. 9 shows the effect on apparent diffusion coefficient of
varying the nominal flip angle from 70� to 110� for (a) the Oneshot
and (b) the PFGDSTE pulse sequence. The experimental data were
processed twice: once using a mono-exponential fit (triangles)



70 80 90 100 110 

1.7 

1.75 

1.8 

1.85 

1.9 

1.95 

nominal flip angle (degrees) 

D
ap

p
/ 1

0-9
m

2
s-1

 

a

b

D
ap

p
/ 1

0-9
m

2
s-1

 

1.7 

1.75 

1.8 

1.85 

1.9 

1.95 

70 80 90 100 110 
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with a gradient calibration factor b set using the first term of the
power series in Eq. (10), which gives the correct signal-weighted
average gradient, and once using non-uniform field gradient cor-
rection by fitting experimental data to Eq. (10) (squares). The error
bars indicate twice the standard error estimated by the Levenberg–
Marquardt fitting algorithm. The data show clearly that the effect
1 2 3 4 5 6 7 80

1.92

1.90

1.88

1.86

1.84

1.94

1 2 3 40

-Dγ2
G

2δ2Δ' 
(max)

a
-Dγ2

G
2δ2

b
Fig. 10. Apparent diffusion coefficient D as a function of range of diffusional attenuation
standard doped water sample (1% H2O in D2O, 0.1 mg/ml GdCl3, 0.1% sodium 3-(trimeth
100 steps from 0.49 to 19.68 G cm�1. Triangles represent a single exponential fit of selec
power series (Eq. (10)) parameterised by fitting the synthetic diffusional decay (filled circ
order exponential power series parameterised by fitting the experimental diffusional dec
the synthetic diffusional decay.
of field gradient non-uniformity is to make apparent diffusion coef-
ficients measured by NMR vary with pulse flip angle; because the
sensitivity to flip angle increases markedly above 90� nominal flip
angle it is prudent to trade a small decrease in signal-to-noise ratio
for a reduction in systematic errors by using nominal flip angles
about 10% lower than the theoretical optimum, i.e. using 80� and
160� pulses in place of 90� and 180�. This is why the calibration
data reported earlier were measured with a reduced flip angle,
and why the apparent diffusion coefficients found with non-uni-
form gradient correction in the data of Fig. 9 match the literature
value at a nominal flip angle of 80�.

4.3. Effect of signal attenuation range on diffusion measurements

In any measurement of diffusion by PFG NMR a choice has to be
made of the gradient pulse widths, diffusion delay and range of
pulsed field gradient strengths to be used, and hence of the range
of diffusional attenuation observed. Because the contribution to
the total signal made by regions of the sample with stronger gradi-
ent G decreases as the signal attenuation increases, mono-expo-
nential fitting (Eq. (1)) of experimental diffusion data will lead to
an apparent diffusion coefficient which depends on the choice of
attenuation range. Fig. 10 shows the apparent diffusion coefficient
and its estimated standard error as a function of the range of signal
attenuation chosen for a series of measurements with the Oneshot
sequence of Fig. 1a. Nine signal measurements in equal increments
of gradient squared for each of 11 different choices of maximum
nominal gradient varying from 0.49 to 19.6 G cm�1, corresponding
to maximum attenuations of approximately 2- to 2000-fold, were
drawn in each case from a total dataset of 100 measurements
spanning the full gradient range.

Fig. 10a compares the results of mono-exponential fitting (tri-
angles) with fitting using Eq. (10) to 2nd order (squares). As ex-
pected, fitting using Eq. (10) leads to apparent diffusion
coefficients which are independent of attenuation range and show
very low standard errors. At very low attenuation range the results
of mono-exponential fitting converge on the correct diffusion va-
lue. This is because the gradient calibration factor b was set, as
above, to give the correct value for the signal-weighted average
of gradient G over the sample volume. For very low attenuation
the exponential decay may be approximated by a straight line,
and thus gives the correct value of D. For all but the smallest ranges
of attenuation the deviation of the experimental decay from a sin-
gle exponential increases, which leads both to underestimation of
D and to greatly increased estimated errors. Fig. 10b shows the re-
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for experiments on probe 1 using the Oneshot sequence. Data were acquired using a
ylsilyl)-1-propanesulphonate) incrementing nominal pulsed gradient amplitude in
ted sets of 10 datapoints to Eq. (1), and squares a fit (a) to a 2nd order exponential
les in Fig. 5) calculated using the measured signal and gradient profiles, (b) to a 2nd
ay (crosses in Fig. 5), and (c) to the DJG function of Eq. (9) parameterised by fitting



Table 2
Experimental and literature values for diffusion coefficients of simple liquids.

Experimental Literature
D/10�9 m2 s�1 D/10�9 m2 s�1

a 4.28 m MgCl2 0.472 ± 0.005 0.468 ± 0.008
b Cyclooctane 0.55 ± 0.005 0.546 ± 0.006
c Dimethylsulphoxide 0.73 ± 0.007 0.723 ± 0.008
d 3.21 m MgCl2 0.779 ± 0.008 0.768 ± 0.008
e Dioxane 1.09 ± 0.007 1.100 ± 0.01
f 2.02 m MgCl2 1.203 ± 0.01 1.206 ± 0.01
g 0.995 m MgCl2 1.728 ± 0.02 1.753 ± 0.02
h 0.372 m MgCl2 2.036 ± 0.02 2.049 ± 0.02
i Water 2.299 ± 0.005 2.303 ± 0.02
j Methanol 2.42 ± 0.02 2.421 ± 0.03
k Chloroform 2.43 ± 0.03 2.432 ± 0.03
l Cyclopentane 3.1 ± 0.02 3.147 ± 0.03
m Acetonitrile 4.37 ± 0.04 4.370 ± 0.04
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sults of fitting the water signal decay to Eq. (10) (squares) param-
eterised using the directly measured experimental signal decay
and Fig. 10c the results fitting to the DJG model (Eq. (9)) (squares).
In each case, the triangles represent the results of fitting to a single
exponential (Eq. (1)) with the gradient calibration factor b set to
give the correct value for the signal-weighted average of gradient
G over the sample volume. It can be seen that compensating for
non-uniform field gradients using any of the methods described
leads to a more accurate evaluation of the diffusion coefficient D
when fitting for any attenuation range, and that the three methods
that compensate for gradient non-uniformity give essentially iden-
tical results.

4.4. Comparison of measurements with literature data

A wide variety of potential diffusion standards have been pro-
posed for different ranges of diffusion coefficient. Here experimen-
tal results are reported comparing the results of experimental
measurements made using a single calibration by the method of
Section 4.1 with reported values for a range of common standards.
Table 2 compares experimental measurements of diffusion coeffi-
cient, obtained using Eq. (10) as described earlier to correct for
the effects of gradient non-uniformity, with the values reported
in the literature [27,41–43]. Data were acquired using the PFGDSTE
convection-compensated pulse sequence (the sequence of Fig. 1b
without the read gradient Gr), using probe 1 at a nominal temper-
ature of 25 �C. Signal intensities were, as noted above, quantified
by integration, because of the large variations in linewidth caused
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Fig. 11. Correlation between experimental diffusion coefficients obtained by fitting
of experimental data to Eq. (10) and values reported in the literature for the
samples of Table 2, showing the ellipsoids of uncertainty.
by radiation damping. (This approach is effective for pure com-
pounds, but in mixtures, where signal overlap is a potential prob-
lem, a more appropriate and equally effective solution is to reduce
the flip angle of the first pulse [15].) The errors quoted for the
experimental data are twice the standard error estimated by com-
bining the standard error reported by the Levenberg–Marquardt
nonlinear least squares fitting algorithm with the 1% estimated
for the effects of uncertainty in sample temperature. The latter
source of error dominates, since all the spectra had good S/N ratio.
Fig. 11 compares the experimental and literature data in a scatter
plot, showing the ellipsoids of uncertainty.
5. Discussion

The experimental data presented demonstrate that it is possible
to explain very satisfactorily the experimentally observed devia-
tions in diffusional attenuation from the expected mono-exponen-
tial form of the Stejskal–Tanner equation. The measured deviations
match very closely those predicted from an analysis of the mea-
sured variations in signal strength and pulsed field gradient with
position z in the sample, providing reassurance that other contribu-
tions such as electrical nonlinearity and transverse variation of gra-
dient strength are minor. A number of practical consequences
follow. First, the effects of non-uniform field gradients on diffusion
measurements can be corrected for to high accuracy by modifying
the Stejskal–Tanner equation. This requires either very accurate
measurements of the diffusional attenuation for a model calibrant,
or, preferably, a full signal and gradient mapping, again using a suit-
able calibrant such as dilute HDO in D2O, followed by the calcula-
tion of two or more fitting coefficients for the re-parameterised
Stejskal–Tanner equation. The mapping experiments can be quite
demanding, but need only be performed once per probe and can
be simplified by the use of whole echo transformation and absolute
value display. Two methods for the re-parameterisation are in cur-
rent use, that described by Damberg and co-workers [17] and that
described here. Both are based on the same physical principles
and both give excellent results with the relatively mild gradient
non-uniformity encountered in modern commercial pulsed field
gradient probes, while the latter method also allows more severely
nonlinear gradients to be catered for. The latter method appears to
have been the more widely used to date, with numerous applica-
tions [8,15,16,18–26]. Second, the ability to correct for the effects
of non-uniform field gradients greatly reduces the difficulty of
ensuring accurate calibration of diffusion measurements, removing
(where, as is generally the case, the electrical linearity of the gradi-
ent system is good) the need for a separate calibration for each
range of diffusion coefficient. Third, the systematic contributions
to the estimated standard errors in diffusion coefficient found for
typical commercial probes with mild gradient nonlinearity, such
as probes b and c above, are greatly reduced, typically to a small
fraction of a percent. As an important corollary, the resolution of
DOSY experiments improves in proportion. Fourth, all NMR diffu-
sion measurements show a systematic sensitivity to pulse width
calibration that appears to have been neglected hitherto, but that
can be controlled by careful calibration and/or conservative choice
of pulse widths. Fifth, while the exact parameters needed for a mod-
ified Stejskal–Tanner equation depend both on the characteristics
of the probe and on the particular pulse sequence used, it should
be possible to calculate the necessary parameters for any pulse se-
quence given the results of a single mapping experiment. Sixth, cor-
recting for the gradient non-uniformity can allow accurate
measurements to be made using standard high resolution NMR
probes, without the need for probes specifically dedicated to diffu-
sion measurement; conversely, the limiting accuracy achievable
using the latter may be improved.
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