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Measurement of diffusion-weighted NMR spectra as a function

of time allows the time-dependence of concentration and the

isolated spectrum to be found for each component in a reaction,

without prior assumptions about spectra, kinetics or diffusion

behaviour, by data decomposition using the PARAFAC

algorithm.

Nuclear magnetic resonance (NMR) is frequently employed to

study reaction kinetics. NMR can provide detailed structural

information about (and often identify) the chemical entities

involved in a reaction, and as it is non-invasive and non-

destructive, the kinetics of an intact mixture can be studied in

real time directly in the NMR tube1 (alternatives exist for the

study of reaction conditions that cannot be duplicated in an

NMR probe2). Reaction monitoring by quantitative NMR

works best when each component in a reaction mixture has at

least one well-resolved resonance; the change in peak integral

can then be used directly to determine the kinetic behaviour.3

When no resolved peaks are available, as is quite common, the

extraction of kinetic data becomes much more challenging,

and it is often impossible to identify individual reaction

components, let alone determine their concentrations. We

demonstrate here that by adding diffusion information to the

NMR experiments, the spectrum, time evolution and diffusion

data can be recovered for each component in a reaction

mixture. Because the data are trilinear (i.e. vary independently

in three dimensions, here diffusional attenuation, time evolu-

tion and chemical shift) they can be decomposed using a

PARAFAC4 (parallel factor analysis) algorithm, and it is

therefore possible to analyse the data without the need for

fitting to a predetermined model, and without having to

constrain the data to fit either the reaction kinetics or the

diffusional attenuation.

The study of reactions is an example of the general case of

mixture analysis by NMR. It is well known that it can be

frustrating to study intact mixtures by NMR, as it is often

difficult to assign resonances unambiguously to given mixture

components. It is expensive, tedious and time-consuming to

separate components physically (e.g. by chromatography)

before subjecting them to NMR, and frequently it is the study

of the intact mixture itself that is of interest (as for reaction

monitoring). Therefore it is desirable to develop NMR

methods that can recover the required information from intact

mixtures. Some of the most powerful NMR methods currently

available, commonly referred to as DOSY (diffusion-ordered

spectroscopy) experiments, are based on diffusion;5–9 these are

most effective where each component in a mixture has a

unique rate of diffusion. The diffusion of molecules can be

measured by recording the signal attenuation in a pulsed field

gradient NMR experiment,10 typically by incrementing the

gradient strength in a pulsed field gradient spin or stimulated

echo. It was recognised early on that the results of such

experiments can be used to distinguish the signals from

different molecular species.11 The decays of individual NMR

signals are typically fitted to a model function, and the fitted

diffusion coefficient is then used to correlate the signals of

individual molecular species. In high resolution DOSY,5,6 this

is done by fitting each peak individually (implicitly assuming

that there is no spectral overlap), while in multivariate

methods the whole bandwidth is fitted simultaneously.7–9

The model function used is typically some form of the

Stejskal–Tanner equation,10 which describes the effect of

pulsed field gradient on signal amplitude; for best results, the

equation can be extended to include the effects of imperfect

field gradient uniformity.6,12

DOSY and kinetic studies by NMR have much in common:

both rely on fitting variations in signal amplitude to suitable

model functions, and in both cases it is far easier to analyse

experimental data when the NMR signals of individual species

are well resolved. DOSY data and timecourse spectra are

bilinear: signal intensity I is measured as a function of two

variables, frequency and gradient amplitude, and frequency

and time, respectively. In a bilinear dataset, the theoretical

intensity Ii for a given signal i is the product of the signal

variation as a function of two different variables, Ii(p,q) =

Pi(p)Qi(q). Thus in DOSY, if the spectrum of component i is

Si(f) and its signals attenuate as a function of gradient g

according to Ai(g), then Ii(f,g) is the product of Si(f) and

Ai(g). The experimental dataset is a tensor of rank 2, and may

be represented as a sum overN components i of outer products

of two vectors Si and Ai, plus some residual E:

I ¼
XN

i¼1
SiAi þ E ð1Þ

In analysing bilinear data with spectral overlap it is common

to use multivariate methods to help resolve the component

spectra (and diffusion/kinetics).7–9,13–16 Unfortunately such

analyses suffer from rotational ambiguity: any linear combina-

tion of the true functions Pi, or the true functions Qi, gives an

equally good fit to the experimental data. For bilinear analysis

it is therefore necessary to apply constraints,17 for example

non-negativity and/or known/hypothesised kinetic models, to
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allow the true solutions to be selected out from the infinite

range of linear combinations. This problem can be avoided,

and a model-free fit obtained by PARAFAC decomposition, if

trilinear data Ii(p,q,r) = Pi(p)Qi(q)Ri(r), in which I varies

linearly with P, Q and R, can be measured. Adding a diffusion

dimension to a bilinear dataset can create a trilinear struc-

ture.18 Recording NMR spectra as a function both of time and

of gradient amplitude, i.e. measuring a timecourse of DOSY

spectra, gives just such a dataset. No prior knowledge of the

component spectra, diffusion behaviour or kinetics is needed;

the only requirement is that the spectrum Si(f), diffusional

attenuation Ai(g) as a function of gradient g, and concentra-

tion profile Ci(t) of each species be independent of each other,

so that the signal intensity Ii(f,g,t) = Si(f)Ai(g)Ci(t). The

experimental dataset is now a rank 3 tensor:

I ¼
XN

i¼1
SiAiCi þ E ð2Þ

To demonstrate the value of using diffusion encoding in the

NMR study of a reacting mixture we have chosen the well-

known acid hydrolysis of maltose to glucose.19 An aqueous

solution of maltose (5.5% w/w) in 33% (w/w) sulfuric acid was

prepared, with 0.15% (w/w) pivalic acid as a reference

compound. Hydrolysis was carried out at 50 1C in a thick-

walled NMR tube (to prevent convection; i.d. 2.2 mm) in a

400 MHz Varian Inova instrument, using a 5 mm diameter

indirect detection probe equipped with a z-gradient coil

allowing gradient pulses up to 30 G cm�1. 98 DOSY experi-

ments were carried out over the course of the reaction, in a

total of 41 h 49 min. Each DOSY experiment used the Oneshot

sequence20 with 32 transients at each of 6 gradient levels,

spaced equally in gradient squared, ranging from 3.0 to

27.3 G cm�1. The data were then Fourier transformed, phase

corrected, baseline corrected, reference deconvoluted17 using

the pivalic acid signal, and the solvent (HOD) peak was

removed by digital filtering, all using the manufacturer’s

VnmrJ software, before export to MATLAB. PARAFAC

analysis was performed with the MATLAB N-Way tool-

box.21,22 Fig. 1 shows a subset of the experimental spectra as

a function of time and gradient level. Small variations in

receiver sensitivity during the experiment were corrected for

by normalising the integral of the spectrum for each gradient

level using the average area of the pivalic acid reference peak.

PARAFAC fitting was carried out for the spectral region

3.1–5.5 ppm with only one assumption, that there were two

components. The resultant fit accounted for 99.8% of the

variance in the data, yielding statistical components Si(f), Ai(g)

and Ci(t) representing the spectrum, signal decay as a function

of gradient strength, and time evolution for the reactant and

product, respectively.

One great advantage of PARAFAC is that, if the assump-

tion of trilinearity holds, the fitted components obtained

should have physical relevance, i.e. should in this case be the

true spectrum, diffusional attenuation and concentration time-

course. Where prior information exists, therefore, it is possible

to assess directly the quality of the PARAFAC decomposition,

for example by comparing the spectra of reaction components

obtained by PARAFAC with the spectra of the pure materials.

As can be seen in Fig. 2, in this case the fitted spectra are

virtually identical to the spectra of pure maltose and pure

glucose, confirming that trilinear decomposition into two

components was successful.

Because the relative scaling of the three multiplicands in the

trilinear model is arbitrary, to obtain true relative concentra-

tions it is necessary to ensure that the other two modes in the

model, Si(f) and Ai(g), are normalised. Where, as here, the

structures of the reaction components are known this is

straightforward: each PARAFAC spectral mode Si(f) is

normalised to have an integral proportional to the number

of protons involved, and each diffusion mode Ai(g) is normal-

ised so that it extrapolates to unity at zero gradient g. Multi-

plying the remaining raw modes Ci(t) by the normalisation

factors by which the Si(f) and Ai(g) were divided then gives

Ci(t) modes, which are directly proportional to concentration.

The net result for the experimental data of Fig. 1 is shown in

Fig. 3B, and as expected gives an excellent fit to first order

kinetics. The PARAFAC results can, since well-resolved

anomeric signals are available, be compared with concentra-

tion profiles obtained by direct integration of the respective

Fig. 1 A subset of the raw experimental data. For the time evolution

every 16th spectrum is shown, and for the decay with gradient

amplitude (caused by diffusion) the first three gradient levels are

shown.

Fig. 2 Reference spectra of pure materials and spectra obtained from

the data of Fig. 1 by PARAFAC for maltose (A), and glucose (B).
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anomeric signals (Fig. 3A); while there is excellent agreement,

the scatter for the PARAFAC result is, as expected, signifi-

cantly smaller. Although for this example the full range of

chemical shifts, including the well-resolved anomeric signals,

was used, essentially identical results were obtained when only

the highly overlapped region between 3.1 and 4.1 ppm was

fitted, confirming that both fully-resolved spectra and kinetic

information can be recovered even when the experimental data

contain no resolved peaks. The diffusion modes A(g) show the

expected near-Gaussian form, with diffusion coefficients for

maltose and glucose of 5.4 � 0.2 and 6.5 � 0.2 � 10�10 m2 s�1,

respectively. The PARAFAC decomposition is remarkably

robust; similar results can be obtained using only two of the

six gradient increments measured, and/or with many fewer

time points, and/or with much poorer signal-to-noise ratio.

From this model study it is clear that by adding diffusion

information to an experimental timecourse study and using

multi-way methods to decompose the results, it is possible not

only to obtain good kinetic data irrespective of whether any

resolved signals are available, but also to recover the NMR

spectra of individual reaction components. In principle, one

could obtain by this method the NMR spectra of inter-

mediates that are difficult or impossible to isolate. The funda-

mental requirement is that each reaction component show a

different diffusion coefficient and a different timecourse; even

where this is not fully met, a hybrid analysis in which

PARAFAC is constrained using prior knowledge (e.g. spectral

non-negativity) can still succeed. It should, however, be

stressed that for a trilinear PARAFAC decomposition, no

assumptions are needed about the form of the spectra, the

diffusional attenuation, or the kinetics. In principle, the

method described should be applicable to mM concentrations,

and offer a limiting time resolution of a few tens of seconds.
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Fig. 3 Experimental data and non-linear least squares fits to first order

kinetics for the acid hydrolysis of maltose to glucose. (A) relative

concentrations of maltose (integral of the inner anomeric signal at

5.4 ppm, decaying curve) and glucose (sum of the integrals of the terminal

alpha and beta peaks between 4.6 and 5.3 ppm minus the integral of

that at 5.4 ppm, rising curve). Estimated rate constant k= 1.36 � 0.02 �
10�5 s�1. (B) Normalised PARAFAC4 components Ci(t) for maltose

(decaying) and glucose (rising); k = 1.40 � 0.01 � 10�5 s�1.
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