
MATH20902: Discrete Maths, Solutions to Problem Set 9

(1) (Euler’s theorem and graphs from regular polyhedra).
One can actually check Euler’s theorem without drawing all the graphs. The polyhe-
dra in question—tetrahedrons, cubes, octahedrons, dodecahedrons and icosahedrons—
are all characterized by having a certain number of identical faces, each of which is
a regular polygon (all edges the same length, all internal angles equal). Further, a
certain fixed number of these identical faces meet at each vertex: the properties of
these so-called Platonic solids are summarized in the table below:

Faces meeting Vertices Edges Faces
Name Face at a vertex n m f

Tetrahedron Triangle 3 4 6 4
Cube Square 3 8 12 6
Octahedron Triangle 4 6 12 8
Dodecahedron Pentagon 3 20 30 12
Icosahedron Triangle 5 12 30 20

It’s easy to see that Euler’s theorem,

n−m+ f = 2,

is satisfied for all five. As is usual with planar graphs, there are many ways to draw
the planar diagrams, but the figure below illustrates one suitable collection.
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(2) (After Jungnickel’s exercise 1.5.13).
We know for that for a planar graph with n vertices and m edges the bound m ≤
3n− 6 applies. Now, the complete graph on n vertices has n(n− 1)/2 edges, so, at
the very least, one needs to remove

n(n− 1)

2
− (3n− 6) =

n2 − 7n+ 12

2
(2.1)

edges to get a planar graph.
This logic provides a lower bound on the number of edges we need to remove to

make Kn planar, but one can prove more. The bound above is sharp in the sense
that it is possible to construct a planar graph on n vertices with exactly m = 3n−6
edges. The figure below illustrates the main idea, which allows one to construct a
sequence of graphs recursively.
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The base case is n = 3, when the bound (2.1) says that m ≤ 3 and the upper
limit is attained in K3, the complete graph on three vertices. If we number the
vertices as shown in the figure, it’s clear that—by adding a vertex that is adjacent
to vertices v1, v2 and v3—we can make a planar graph on n = 4 vertices which also
has the maximal number of edges. Further, this graph has a planar diagram with a
triangular face bounded by the three-cycle (v2, v3, v4, v2). One can continue in this
way, adding a new vertex vk+1 “in the middle” of the face bounded by the three-cycle

(vk−2, vk−1, vk, vk−2)

and, as each step of the construction adds one vertex and three edges, we will obtain
a sequence of triangulated planar graphs with n vertices and m = 3n− 6 edges.
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(3) (Edges and bridges). (a) There are no bridges in the graph at left (yellow
vertices) in the figure below and just one, labelled e, in the graph at right (red
vertices).

e

(b) This is very similar to one of the exercises about trees. Suppose that in a
connected graph G with vertex set V and edge set E, the edge e = (a, b) ∈ E
is not a bridge. Then if we delete e to form a new graph H = G\e this new
graph is also connected. In particular, there is a path

(a = v0, v1, . . . , vk = b)

connecting the vertices a and b, where all the edges (vj, vj+1) for 0 ≤ j < k
are present in both H and G. But then a cycle

(a = v0, v1, . . . , vk, v0 = a)

is present in G, where the final edge, the one connecting vk = b and v0 = a, is
e.

(4) (After Jungnickel’s exercise 1.5.14).
When approaching a problem like this, a good way to start is to write down every-
thing you know. In this case, as G is a planar graph with n ≥ 3 vertices, we have
the following bound on the number of edges:

m ≤ 3n− 6. (4.1)

Of course, we also have a potentially sharper bound that involves the girth of G,
but this problem says nothing about girth. In addition to the inequality above, we
have one other fact, which is true of all graphs. If G has vertex set V , we can use
the Handshaking Lemma to write∑

v∈V

deg(v) = 2m or 1

2

∑
v∈V

deg(v) = m. (4.2)

As problem asks about nd, the number of vertices whose degree is less than or
equal to d, it will prove convenient to have a notation for the number of vertices
whose degree is exactly j. Let’s define ℓj to be

ℓj = |{v ∈ V | deg(v) = j}| .
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It’s now easy to write down formulae for nd and for the total number of vertices, n:

nd =
d∑

j=0

ℓj and n =
n−1∑
j=0

ℓj.

We can also use the ℓj to rewrite the relation in (4.2), which becomes

m =
1

2

n−1∑
j=0

j ℓj.

Putting this result together with (4.1) yields

3n− 6 ≥ 1

2

n−1∑
j=0

j ℓj. or
n−1∑
j=0

j ℓj ≤ 6n− 12, (4.3)

which is beginning to look a bit like the thing we are trying to prove. To complete
the argument we need to look more closely at the sum in the expressions above. The
first step is to break the sum into two pieces: one involving the vertices of degree
no more than d and the other for those of higher degree:

n−1∑
j=0

j ℓj =

(
d∑

j=0

j ℓj

)
+

 n−1∑
j=(d+1)

j ℓj

 . (4.4)

Now we can obtain a lower bound on these sums by replacing the factor of j in each
with its smallest value:(

d∑
j=0

j ℓj

)
+

 n−1∑
j=(d+1)

j ℓj

 ≥

(
d∑

j=0

0× ℓj

)
+

 n−1∑
j=(d+1)

(d+ 1)× ℓj


≥ (d+ 1)

n−1∑
j=(d+1)

ℓj

≥ (d+ 1)(n− nd), (4.5)

where the last line follows because the sum
∑n−1

j=(d+1) ℓj counts those vertices whose
degree exceeds d and, as there are n vertices in total, there are exactly (n−nd) such
high-degree vertices.

Finally, putting Eqns (4.3)–(4.5) together, we have

(d+ 1)(n− nd) ≤

(
d∑

j=0

j ℓj

)
+

 n−1∑
j=(d+1)

j ℓj

 ≤ 6n− 12
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or, tidying things up,

(d+ 1)(n− nd) ≤ 6n− 12

nd+ n− (d+ 1)nd ≤ 6n− 12

−(d+ 1)nd ≤ 5n− dn− 12

−(d+ 1)nd ≤ (5− d)n− 12

(d+ 1)nd ≥ (d− 5)n+ 12

nd ≥ (d− 5)n+ 12

d+ 1

just as advertised.

(5) (Direct proofs that K5 and K3,3 aren’t planar). The main idea needed for this
problem is that if a vertex v lies in the interior of some Jordan curve C, while a
second vertex u lies in the exterior of C, then any curve that represents an edge
connecting u to v must intersect C.
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Figure 1: The three cycles C1, C2 and C3 used in the proof that K5 can’t have a
planar diagram.

(a) The various cycles mentioned in the problem are illustrated in Figure 1: they’re
defined so that the vertex vj lies in the exterior of Cj. Thus, for example,
v1 ∈ ext(C1) and v3 ∈ ext(C3).
Consider the problem of adding the vertex v5 to the diagram in Figure 1 in
such a way as to get a planar diagram for K5. The point representing v5
must lie in the exterior of C1, as otherwise the curve representing the egde
(v1, v5) would have to cross C1. Similar arguments show v5 ∈ ext(C2) and
v5 ∈ ext(C3), so

v5 ∈
3∩

j=1

ext(Cj), (5.1)

which is the result we sought.
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Figure 2: At left, the cycle (u1, v1, u2, v2, u1) and at right, a planar diagram for
K3,3\{v3}.

(b) Now consider the Jordan curve that represents the edges {(v1, v2), (v2, v3), (v3, v1)}.
On the one hand, v4 ∈ int(C) and, on the other hand, Eqn. (5.1) implies that
v5 ∈ ext(C). But then any curve that represents the edge (v4, v5) must cross
C, which means that it’s impossible to find a planar diagram for K5.

(c) One can prove that K3,3 is nonplanar in a similar way. To be concrete, say
that the vertex set of K3,3 is

V = {u1, u2, u3, v1, v2, v3}

and that the edge set includes all possible edges of the form (uj, vk). The left
panel of Figure 2 then shows a planar diagram for the cycle that includes all
such edges running between vertices u1, v1, u2 and v2: one can also think of
it as a planar diagram for K2,2. The right panel of Figure 2 shows the result
of adding one more vertex, u3, and it’s clear that, up to renumbering of the
vertices, any planar diagram for K3,3\{v3}—which is isomorphic to K3,2—must
look similar.
The right panel of Figure 2 also illustrates two cycles, W1 and W3, with the
properties that uj ∈ ext(Wj). Now think about adding v3 to the diagram:
the point representing v3 must be in the exterior of W1 (so that we can draw
the edge (u1, v3) without crossing any other edges) and, for similar reasons
involving u3 and the edge (u3, v3), the point representing v3 must also lie in
the exterior of W3. Thus the analogue of Eqn. (5.1) is

v3 ∈ ext(W1)
∩

ext(W3).

Finally, consider the Jordan curve W that represents the cycle (u1, v1, u3, v2, u1).
The reasoning in the preceeding paragraph says v3 ∈ ext(W ), but u2 ∈ int(W ),
so any curve representing the edge (u2, v3) must cross W , which implies that
K3,3 can’t have a planar diagram.
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