
MATH20902: Discrete Maths, Solutions to Problem Set 8

(1) (After Jungnickel’s exercise 1.5.10).
The first of the two parts is easier, but the second is more interesting.

(a) We know that in a planar graph with n vertices, m edges and girth g, the
following inequality must hold:

m ≤ g(n− 2)

g − 2

Now, the Petersen graph has n = 10 and its girth (the length of the shortest
cycle) is g = 5, so the inequality above tells us that if it is planar, it can have,
at most,

g(n− 2)

g − 2
=

5× (10− 2)

5− 2
=

5× 8

3
=

40

3

edges. But (40/3) < (42/3) = 14 while the actual graph has 15 edges: that’s
too many and thus the Petersen graph cannot be planar.

(b) To use Kuratowski’s Theorem to prove that the Petersen graph is non-planar,
we must find a subgraph that is homeomorphic to either K3,3 or K5. Let’s
call the Petersen graph itself G. Looking at the diagram of G, it’s clear that
the graph cannot be produced directly by subdivision of a graph with fewer
vertices: the basic step of subdivision inserts vertices of degree 2 and all the
vertices in G have degree 3.
On the other hand, G has 10 vertices, while K3,3 has 6 and K5 has only 5: thus
we need to get rid of some vertices, so we should try looking at subgraphs of G
(produced by deleting edges) and hope that some of them are more obviously
homeomorphic to either K3,3 or K5. Further thought shows that K5 is not an
option: the process of subdivision never increases the degree of any vertex,
and all the vertices in the Petersen graph have degree 3, while all those in K5

have degree 4. We should be looking for a subgraph homeomorphic to K3,3.
This requires a bit of trial and error, but not a great deal: the idea is to
work backward through the process of subdivision. The figure below shows
the sequence of steps that I thought through while preparing this solution.

(i) (ii) (iii) (iv)

(v) (vi) (vii) (viii)
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• As a first step, look what happens when we consider a subgraph of G with
just one less edge: this is illustrated in parts (i) and (ii) of the sequence
above.

• The new graph has two vertices with degree 2, so we may imagine these
to have been inserted during the process of subdivision: steps (iii) and
(iv) show the results of undoing these insertions. We are left with a graph
with two fewer vertices.

• The result of the previous step is, again, a graph in which every vertex
had degree three. But then, as we saw above, we should be able to
eliminate two vertices, by first removing a suitably-chosen edge. Using
this approach, we can get down to 6 vertices, the same number as K3,3

has. Panel (v) shows one possible solution: if we had deleted the edge
shown in grey from G, then the two vertices at its endpoints would be left
with degree 2 and we could again regard them as insertions made during
subdivision, and so remove them. This is illustrated in the sequence
(vi)–(vii).

• All the figures in the bottom row, (v)–(vii), are shaded in such a way
as to highlight the bipartite division of the final graph, (viii). It has
6 vertices, all of degree three, that fall into two disjoint groups. Each
vertex in one group is connected to each vertex in the other and there
are no intra-group edges. In short, (viii) is a representation of K3.3.

Putting all this reasoning together, one can draw the figure below, which is
a subgraph of the Petersen graph that is homeomorphic to K3,3. Here the
plotting conventions are as in the answer to Problem (2): the vertices of K3,3

are shown in two shades of orange while those added during the four rounds of
subdivision are shown in white. Edges removed during subdivision are shown
with pale grey dashes.

(2). There are (infinitely!) many correct answers to this question, but the figure
below shows one particularly simple group. The three diagrams show subdivisions
of K3,3 in which deleted edges appear as pale, dashed grey line segments and the
vertices added during subdivision are shown in white, while those inherited from
K3,3 are shown in shades of orange.
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It’s clear that the leftmost graph is not isomorphic to the other two, as it has fewer
vertices. The middle and rightmost graphs are not isomorphic either, for while both
contain a pair of (new) vertices of degree two, these two are adjacent in the middle
graph, but not in the rightmost one.

The table below summarizes the sizes of the edge and vertex sets

Graph |V | |E| |E| − |V |
Left 7 10 3
Middle 8 11 3
Right 8 11 3

(3) (After Jungnickel’s exercise 1.5.7).
Consider a graph G with vertex set V and edge set E. The basic step in making a
subdivision of G is to replace an edge, say, e = (a, b) with a path

(a, x1, . . . , xk, b)

where the x1, . . . , xk are an arbitrary number k of new vertices. This process pro-
duces a new graph—call it G′ with vertex set V ′ and edge set E ′—and it is clear
from the construction that

|V ′| = |V |+ k and |E ′| = |E| − 1 + (k + 1).

But this implies

|E ′| − |V ′| = (|E| − 1 + (k + 1))− (|V |+ k)

= (|E|+ k)− |V | − k

= |E| − |V |,

which is just the thing we were asked to show. A very scrupulous reader could use
this observation as the basis of an inductive proof where the induction is on the
number of edges replaced during the construction of the subdivision.

(4) (After Jungnickel’s exercise 1.5.14).
When approaching a problem like this, a good way to start is to write down every-
thing you know. In this case, as G is a planar graph with n ≥ 3 vertices, we have
the following bound on the number of edges:

m ≤ 3n− 6. (4.1)
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Of course, we also have a potentially sharper bound that involves the girth of G,
but this problem says nothing about girth. In addition to the inequality above, we
have one other fact, which is true of all graphs. If G has vertex set V , we can use
the Handshaking Lemma to write∑

v∈V

deg(v) = 2m or 1

2

∑
v∈V

deg(v) = m. (4.2)

As problem asks about nd, the number of vertices whose degree is less than or
equal to d, it will prove convenient to have a notation for the number of vertices
whose degree is exactly j. Let’s define lj to be

lj = |{v ∈ V | deg(v) = j}| .

It’s now easy to write down formulae for nd and for the total number of vertices, n:

nd =
d∑

j=0

lj and n =
n−1∑
j=0

lj.

We can also use the lj to rewrite the relation in (4.2), which becomes

m =
1

2

n−1∑
j=0

j lj.

Putting this result together with (4.1) yields

3n− 6 ≥ 1

2

n−1∑
j=0

j lj. or
n−1∑
j=0

j lj ≤ 6n− 12, (4.3)

which is beginning to look a bit like the thing we are trying to prove. To complete
the argument we need to look more closely at the sum in the expressions above. The
first step is to break the sum into two pieces: one involving the vertices of degree
no more than d and the other for those of higher degree:

n−1∑
j=0

j lj =

(
d∑

j=0

j lj

)
+

 n−1∑
j=(d+1)

j lj

 . (4.4)

Now we can obtain a lower bound on these sums by replacing the factor of j in each
with its smallest value:(

d∑
j=0

j lj

)
+

 n−1∑
j=(d+1)

j lj

 ≥

(
d∑

j=0

0× lj

)
+

 n−1∑
j=(d+1)

(d+ 1)× lj


≥ (d+ 1)

n−1∑
j=(d+1)

lj

≥ (d+ 1)(n− nd), (4.5)
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where the last line follows because the sum
∑n−1

j=(d+1) lj counts those vertices whose
degree exceeds d and, as there are n vertices in total, there are exactly (n−nd) such
high-degree vertices.

Finally, putting Eqns (4.3)–(4.5) together, we have

(d+ 1)(n− nd) ≤

(
d∑

j=0

j lj

)
+

 n−1∑
j=(d+1)

j lj

 ≤ 6n− 12

or, tidying things up,

(d+ 1)(n− nd) ≤ 6n− 12

nd+ n− (d+ 1)nd ≤ 6n− 12

−(d+ 1)nd ≤ 5n− dn− 12

−(d+ 1)nd ≤ (5− d)n− 12

(d+ 1)nd ≥ (d− 5)n+ 12

nd ≥ (d− 5)n+ 12

d+ 1

just as advertised.
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(5) (Direct proofs that K5 and K3,3 aren’t planar). The main idea needed for this
problem is that if a vertex v lies in the interior of some Jordan curve C, while a
second vertex u lies in the exterior of C, then any curve that represents an edge
connecting u to v must intersect C.

v
1

v
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v
4

v
3

C
2

C
3

C
1

Figure 1: The three cycles C1, C2 and C3 used in the proof that K5 can’t have a
planar diagram.

(a) The various cycles mentioned in the problem are illustrated in Figure 1: they’re
defined so that the vertex vj lies in the exterior of Cj. Thus, for example,
v1 ∈ ext(C1) and v3 ∈ ext(C3).
Consider the problem of adding the vertex v5 to the diagram in Figure 1 in
such a way as to get a planar diagram for K5. The point representing v5
must lie in the exterior of C1, as otherwise the curve representing the egde
(v1, v5) would have to cross C1. Similar arguments show v5 ∈ ext(C2) and
v5 ∈ ext(C3), so

v5 ∈
3∩

j=1

ext(Cj), (5.1)

which is the result we sought.

(b) Now consider the Jordan curve that represents the edges {(v1, v2), (v2, v3), (v3, v1)}.
On the one hand, v4 ∈ int(C) and, on the other hand, Eqn. (5.1) implies that
v5 ∈ ext(C). But then any curve that represents the edge (v4, v5) must cross
C, which means that it’s impossible to find a planar diagram for K5.

(c) One can prove that K3,3 is nonplanar in a similar way. To be concrete, say
that the vertex set of K3,3 is

V = {u1, u2, u3, v1, v2, v3}

and that the edge set includes all possible edges of the form (uj, vk). The left
panel of Figure 2 then shows a planar diagram for the cycle that includes all
such edges running between vertices u1, v1, u2 and v2: one can also think of
it as a planar diagram for K2,2. The right panel of Figure 2 shows the result
of adding one more vertex, u3, and it’s clear that, up to renumbering of the
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Figure 2: At left, the cycle (u1, v1, u2, v2, u1) and at right, a planar diagram for
K3,3\{v3}.

vertices, any planar diagram for K3,3\{v3}—which is isomorphic to K3,2—must
look similar.
The right panel of Figure 2 also illustrates two cycles, W1 and W3, with the
properties that uj ∈ ext(Wj). Now think about adding v3 to the diagram:
the point representing v3 must be in the exterior of W1 (so that we can draw
the edge (u1, v3) without crossing any other edges) and, for similar reasons
involving u3 and the edge (u3, v3), the point representing v3 must also lie in
the exterior of W3. Thus the analogue of Eqn. (5.1) is

v3 ∈ ext(W1)
∩

ext(W3).

Finally, consider the Jordan curve W that represents the cycle (u1, v1, u3, v2, u1).
The reasoning in the preceeding paragraph says v3 ∈ ext(W ), but u2 ∈ int(W ),
so any curve representing the edge (u2, v3) must cross W , which implies that
K3,3 can’t have a planar diagram.
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Figure 1: Two stages in the construction of a thrackle embedding for C7: all edges
are of the form (vj, vj+3).

(6) (Conway’s thrackles). I learned about thrackles from Bondy and Murty’s book,
which includes more exercises about them.

(a) The standard drawing for K3—as a triangle with the vertices on the corners—
is a thrackle embedding: each edge shares exactly one point, an endpoint, with
each of the other two edges.

(b) The thrackles for odd-length cycles are a generalization of the five-pointed star
pictured in the problem set. For a general k-cycle with k an odd number you
can prepare a star-shaped thrackle embedding as follows:

• Define a set of angles θj = 2π(j− 1)/k (with 1 ≤ j ≤ k) and draw points
vj on the unit circle at positions

vj = (xj, yj) = (cos(θj), sin(θj)).

• As k is an odd number, we can write it as k = 2m + 1 with m ∈ N.
Draw a line segment from v1 to v1+m, then another from v1+m to v1+2m,
and so on, adding all possible line segments connecting points v1+jm to
v1+(j+1)m. The subscripts here should be interpreted periodically so, for
example, v0 = vk and vk+1 = v1. Figure 1 illustrates this construction
for the case k = 7.

To prove, conclusively, that this construction leads to a thrackle embedding
for C2m+1 we have to do two things:

i) establish that the edges described above really do link up to form a cycle
of exactly k vertices;

ii) establish that all pairs of edges intersect each other exactly once, either
at their endpoints of somewhere in their interiors.

For the first of these, consider the sequence of vertices

(v1, v1+m, v1+2m, . . . , v1+km). (6.1)
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This is the order in which our construction visits the vj and it’s easy to see
that when the vertex numbers are considered periodically, v1+km = v1, so
the sequence starts and ends with the same vertex. If, additionally, we can
show that all the vertices in between are distinct, then we’ve proven that
(6.1) describes a cycle isomorphic to Ck. So then, suppose that there are two
vertices v1+j1m and v1+j2m, with 1 < j1, j2 < k that actually correspond to
the same point in the diagram. Then the subscripts (1+ j1m) must (1+ j2m)
differ by a multiple of k = 2m+ 1, so

(1 + j1m)− (1 + j2m) = (j1 − j2)m = 0 mod k.

But this means ∃ b ∈ Z such that (j1 − j2)m = bk, which means

(j1 − j2)m = b(2m+ 1) and b = (j1 − j2)

(
m

2m+ 1

)
. (6.2)

It’s clear that the second factor, m/(2m + 1), is a rational number in lowest
terms (that is, its numerator and denominator have no common factors), so
the only ways that (6.2) can be true are if b = 0, so j1 = j2, contradiciting
our assumption that the vertices were distinct, or if b is a nonzero multiple of
k = (2m+ 1), contradicting the fact that 1 < j1, j2 < k. This means that the
only repeated vertex in the sequence (6.1) is v1 = v1+km and so the sequence
does, indeed, specify a cycle isomorphic to Ck.
To check the intersection properties of the edges, consider the edge (v1, v1+m):
the symmetry of the diagram means that if this edge behaves correctly, then so
do all the others. This edge meets two others, (v1+m, v1+2m) and (v1+(k−1)m, v1),
at their shared end points and so should interesect the remaining k − 3 edges
in their interiors. Consider the vertices

{v2, v3, . . . , vm}.

There are (m− 1) = (k − 3)/2 of them and they all lie on the arc of the unit
circle that runs counter-clockwise from v1 to vm. Each of these vertices has
degree two: each vertex vj with 2 ≤ j ≤ m is connected to both vj+m and vj−m.
And both vj+m and vj−m = vj+m+1 lie in that arc of the unit circle which runs
counter-clockwise from vm+1 back to v1. Thus all 2×(m−1) = 2m−2 = k−3
of these edges intersect the edge (v1, v1+m) exactly once, which is what we
sought to prove.
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Figure 2: Any thrackle embedding for C4\(v1, v4) must look similar to the left
panel. In the right panle, the point u is the intersection of the arcs representing the
edges (v1, v2) and (v3, v4), while C is the Jordan curve formed by the union of the
arcs (u, v2), (v2, v3) and (v3, u).

(c) Consider Figure 2: it illustrates the main point of a proof by contradiction
that C4 cannot have a thrackle embedding. If we had such an embedding, then
deleting the curve representing the edge (v1, v4) must yield a result similar the
figure’s left panel: the curves representing (v1, v2) and (v3, v4) must intersect
exactly once. Define u to be this point of intersection, then consdier the
Jordan curve C = (u, v2, v3, u) illustrated in the left panel of Figure 2. Both
v1 and v4 lie in the exterior of C and this means that any curve that connects
them must cross C an even number of times (which includes the possibility
of zero crossings). This precludes a thrackle embedding of C4, for in any
such embedding the curve representing (v1, v4) must cross the one representing
(v2, v3) exactly once.
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