(1) If one numbers the vertices as shown below

the corresponding Laplacians are given by L = D - A where A is the adjacency matrix and D is a diagonal matrix with $D_{jj} = \deg(v_j)$. For the graphs above this leads to

$$L_{left} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 3 & -1 & -1 \\ 0 & -1 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{bmatrix} \quad \text{and} \quad L_{right} = \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 3 & -1 & -1 \\ -1 & -1 & 2 & 0 \\ -1 & -1 & 0 & 2 \end{bmatrix}.$$

The graph on the left *is* a tree, so we expect it to contain only a single spanning tree consisting of the graph itself. And, reassuringly, if we apply Kirchoff's Matrix-Tree Theorem the matrix \hat{L}_2 formed by deleting the second row and column of L_{left} we find

$$\det(\hat{L}_2) = \det \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = 1.$$

By way of contrast, deleting the first row and column of L_{right} leads to

$$det(\hat{L}_{1}) = det \begin{bmatrix} 3 & -1 & -1 \\ -1 & 2 & 0 \\ -1 & 0 & 2 \end{bmatrix}$$

= $3 \times det \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} - (-1) \times det \begin{bmatrix} -1 & 0 \\ -1 & 2 \end{bmatrix} + (-1) \times det \begin{bmatrix} -1 & 2 \\ -1 & 0 \end{bmatrix}$
= $12 - 2 - 2$
= $8.$

The eight spanning trees are illustrated in Figure 1.

Figure 1: The eight spanning trees for the graph at right in Problem (1).

(2) If one numbers the vertices as shown in the problem

the corresponding Laplacian is L = D - A where A is the adjacency matrix and D is a diagonal matrix with $D_{jj} = \deg_{in}(v_j)$. For the graph above this is

$$L = D - A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{bmatrix} - \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 3 & -1 & -1 \\ 0 & -1 & 2 & -1 \\ -1 & -1 & -1 & 2 \end{bmatrix}.$$

Tutte's Matrix-Tree Theorem then says that numbers of spanning arborescences rooted at v_j is given by $\det(\hat{L}_j)$, where \hat{L}_j is the matrix formed by deleting the *j*-th row and column of *L*. The results for the Laplacian above are listed in Table 1.

(3) The permutation group S_6 has 6! = 720 elements and so it is unlikely that your choice of four random elements includes any of those listed in Table 2, but the basic principles are the same: Figure 2 shows the digraphs I used to compute the cycle decompositions and sets fix(σ), while the values of sgn(σ) come from the rules

- If σ is the identity permutation, then $sgn(\sigma) = 1$.
- If σ is a cycle of length l then $\operatorname{sgn}(\sigma) = (-1)^{l+1}$.
- If σ has a decomposition into $k \ge 2$ disjoint cycles whose lengths are l_1, \ldots, l_k then

$$\operatorname{sgn}(\sigma) = (-1)^{L+k}$$
 where $L = \sum_{j=1}^{k} l_j$.

Table 1: The number of spanning arborescences rooted at each of the vertices in the digraph from Problem (2).

σ fix(σ) Cycle		Cycle decomposition	$\operatorname{sgn}(\sigma)$
$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	Ø	(1, 3, 5, 6)(2, 4)	1
$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\{2, 5\}$	(1, 3, 4, 6)	-1
$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\{3, 4\}$	(1, 5, 6, 2)	-1
$\left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\{3, 4\}$	(1,5)(2,6)	1

Table 2: The sets fix(σ), cycle decompositions and signs sgn(σ) for four randomlyselected members of S_6 .

Figure 2: The digraphs used to compute the cycle decompositions and sets $fix(\sigma)$ for the permutations listed in Table 2.

(4) Applying the Principle of Inclusion/Exclusion to a union of k sets requires the consideration of 2^k intersections, so this problem, with k = 4, is near the limit of what's convenient to do by hand.

(a) It's easiest to prove this by contradiction. Suppose n is a composite number and that all its prime factors exceed \sqrt{n} . As n is composite, it must have two or more prime factors. We'll arrange them in ascending order:

 $n = p_1 \times p_2 \times \ldots$ with, by assumption, $\sqrt{n} < p_1 \le p_2 \le \ldots$

Note that the expression above includes the possibility that $p_1 = p_2$. Then on the one hand, we know that

Then, on the one hand, we know that

$$n \ge p_1 \times p_2$$

because n may have other prime factors in addition to p_1 and p_2 . But on the other hand, as we have assumed that $p_1 > \sqrt{n}$ and $p_2 > \sqrt{n}$ we also have

$$p_1 \times p_2 > (\sqrt{n})(\sqrt{n})$$
 or $p_1 \times p_2 > n_2$

This is a contradiction and the only possible escape is to conclude that n's smallest prime factor must satisfy $p_1 \leq \sqrt{n}$.

(b) If we take the universal set to be

$$U = \{2, 3, \dots, 120\}$$

and the subsets X_1 , X_2 , X_3 and X_4 to be, respectively, the multiples of 2, 3, 5 and 7 then the cardinalities of the various intersections we need are:

Set	Description	Cardinality
X_1	multiples of 2	60
X_2	multiples of 3	40
X_3	multiples of 5	24
X_4	multiples of 7	17
$X_1 \cap X_2$	multiples of 6	20
$X_1 \cap X_3$	multiples of 10	12
$X_1 \cap X_4$	multiples of 14	8
$X_2 \cap X_3$	multiples of 15	8
$X_2 \cap X_4$	multiples of 21	5
$X_3 \cap X_4$	multiples of 35	3
$X_1 \cap X_2 \cap X_3$	multiples of 30	4
$X_1 \cap X_2 \cap X_4$	multiples of 42	2
$X_1 \cap X_3 \cap X_4$	multiples of 70	1
$X_2 \cap X_3 \cap X_4$	multiples of 105	1
$X_1 \cap X_2 \cap X_3 \cap X_4$	multiples of 210	0

This leads to the conclusion that the number of integers in the specified range that are multiples of 2, 3, 5 or 7 is

$$\begin{aligned} |X_1 \cup X_2 \cup X_3 \cup X_4| &= \sum_{I \subseteq \{1, \dots, 4\}, I \neq \emptyset} (-1)^{|I|+1} \left| \bigcap_{j \in I} X_j \right| \\ &= (60 + 40 + 24 + 17) - (10 + 12 + 8 + 8 + 5 + 3) \\ &+ (4 + 2 + 1 + 1) - 0 \\ &= 141 - 56 + 8 \\ &= 93 \end{aligned}$$

(c) Given that |U| = 119, the result from part (b) means that there are 119 - 93 = 26 members of U that are coprime to 2, 3, 5 and 7. And in light of our result from part (a), any composite number in U has a prime factor less than $\sqrt{120} < \sqrt{121} = 11$, so must be divisible by at least one of 2, 3, 5 and 7 and thus must belong to one of the X_j . Thus all 26 members of $U \setminus X_1 \cup X_2 \cup X_3 \cup X_4$ are prime, as are 2, 3, 5 and 7, for a grand total of 26 + 4 = 30 primes in the specified range.