MATH20902: Discrete Maths, Solutions to Problem Set 5

(1) If one numbers the vertices as shown below

the corresponding Laplacians are given by $L=D-A$ where A is the adjacency matrix and D is a diagonal matrix with $D_{j j}=\operatorname{deg}\left(v_{j}\right)$. For the graphs above this leads to

$$
L_{\text {left }}=\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
-1 & 3 & -1 & -1 \\
0 & -1 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right] \quad \text { and } \quad L_{\text {right }}=\left[\begin{array}{rrrr}
3 & -1 & -1 & -1 \\
-1 & 3 & -1 & -1 \\
-1 & -1 & 2 & 0 \\
-1 & -1 & 0 & 2
\end{array}\right] .
$$

The graph on the left is a tree, so we expect it to contain only a single spanning tree consisting of the graph itself. And, reassuringly, if we apply Kirchoff's Matrix-Tree Theorem the matrix \hat{L}_{2} formed by deleting the second row and column of $L_{\text {left }}$ we find

$$
\operatorname{det}\left(\hat{L}_{2}\right)=\operatorname{det}\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=1
$$

By way of contrast, deleting the first row and column of $L_{\text {right }}$ leads to

$$
\begin{aligned}
\operatorname{det}\left(\hat{L}_{1}\right) & =\operatorname{det}\left[\begin{array}{rrr}
3 & -1 & -1 \\
-1 & 2 & 0 \\
-1 & 0 & 2
\end{array}\right] \\
& =3 \times \operatorname{det}\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]-(-1) \times \operatorname{det}\left[\begin{array}{ll}
-1 & 0 \\
-1 & 2
\end{array}\right]+(-1) \times \operatorname{det}\left[\begin{array}{ll}
-1 & 2 \\
-1 & 0
\end{array}\right] \\
& =12-2-2 \\
& =8
\end{aligned}
$$

The eight spanning trees are illustrated in Figure 1.

Figure 1: The eight spanning trees for the graph at right in Problem (1).
(2) If one numbers the vertices as shown in the problem

the corresponding Laplacian is $L=D-A$ where A is the adjacency matrix and D is a diagonal matrix with $D_{j j}=\operatorname{deg}_{i n}\left(v_{j}\right)$. For the graph above this is

$$
L=D-A=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 2 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]-\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{array}\right]=\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
0 & 3 & -1 & -1 \\
0 & -1 & 2 & -1 \\
-1 & -1 & -1 & 2
\end{array}\right] .
$$

Tutte's Matrix-Tree Theorem then says that numbers of spanning arborescences rooted at v_{j} is given by $\operatorname{det}\left(\hat{L}_{j}\right)$, where \hat{L}_{j} is the matrix formed by deleting the j-th row and column of L. The results for the Laplacian above are listed in Table 1 .
(3) The permutation group S_{6} has $6!=720$ elements and so it is unlikely that your choice of four random elements includes any of those listed in Table 2, but the basic principles are the same: Figure 2 shows the digraphs I used to compute the cycle decompositions and sets fix (σ), while the values of $\operatorname{sgn}(\sigma)$ come from the rules

- If σ is the identity permutation, then $\operatorname{sgn}(\sigma)=1$.
- If σ is a cycle of length l then $\operatorname{sgn}(\sigma)=(-1)^{l+1}$.
- If σ has a decomposition into $k \geq 2$ disjoint cycles whose lengths are l_{1}, \ldots, l_{k} then

$$
\operatorname{sgn}(\sigma)=(-1)^{L+k} \quad \text { where } \quad L=\sum_{j=1}^{k} l_{j}
$$

$$
\begin{array}{lll}
v_{j} & \hat{L}_{j} & \operatorname{det}\left(\hat{L}_{j}\right) \\
\hline
\end{array}
$$

$$
v_{1}\left[\begin{array}{rrr}
3 & -1 & -1 \tag{4}\\
-1 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right] \quad 3
$$

$$
v_{2}\left[\begin{array}{rrr}
1 & 0 & 0 \tag{5}\\
0 & 2 & -1 \\
-1 & -1 & 2
\end{array}\right]
$$

$$
3 \quad v_{4}\left[\begin{array}{rrr}
1 & -1 & 0 \\
0 & 3 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

Table 1: The number of spanning arborescences rooted at each of the vertices in the digraph from Problem (2).

σ	fix (σ)	Cycle decomposition	$\operatorname{sgn}(\sigma)$
$\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 2 & 6 & 1\end{array}\right)$	\emptyset	$(1,3,5,6)(2,4)$	1
$\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 2 & 4 & 6 & 5 & 1\end{array}\right)$	$\{2,5\}$	$(1,3,4,6)$	-1
$\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 3 & 4 & 6 & 2\end{array}\right)$	$\{3,4\}$	$(1,5,6,2)$	-1
$\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 6 & 3 & 4 & 1 & 2\end{array}\right)$	$\{3,4\}$	$(1,5)(2,6)$	1

Table 2: The sets fix (σ), cycle decompositions and signs $\operatorname{sgn}(\sigma)$ for four randomlyselected members of S_{6}.

Figure 2: The digraphs used to compute the cycle decompositions and sets fix (σ) for the permutations listed in Table 2 .
(4) Applying the Principle of Inclusion/Exclusion to a union of k sets requires the consideration of 2^{k} intersections, so this problem, with $k=4$, is near the limit of what's convenient to do by hand.
(a) It's easiest to prove this by contradiction. Suppose n is a composite number and that all its prime factors exceed \sqrt{n}. As n is composite, it must have two or more prime factors. We'll arrange them in ascending order:

$$
n=p_{1} \times p_{2} \times \ldots \quad \text { with, by assumption, } \quad \sqrt{n}<p_{1} \leq p_{2} \leq \ldots
$$

Note that the expression above includes the possibility that $p_{1}=p_{2}$.
Then, on the one hand, we know that

$$
n \geq p_{1} \times p_{2}
$$

because n may have other prime factors in addition to p_{1} and p_{2}. But on the other hand, as we have assumed that $p_{1}>\sqrt{n}$ and $p_{2}>\sqrt{n}$ we also have

$$
p_{1} \times p_{2}>(\sqrt{n})(\sqrt{n}) \quad \text { or } \quad p_{1} \times p_{2}>n
$$

This is a contradiction and the only possible escape is to conclude that n 's smallest prime factor must satisfy $p_{1} \leq \sqrt{n}$.
(b) If we take the universal set to be

$$
U=\{2,3, \ldots, 120\}
$$

and the subsets X_{1}, X_{2}, X_{3} and X_{4} to be, respectively, the multiples of 2, 3, 5 and 7 then the cardinalities of the various intersections we need are:

Set	Description	Cardinality
X_{1}	multiples of 2	60
X_{2}	multiples of 3	40
X_{3}	multiples of 5	24
X_{4}	multiples of 7	17
$X_{1} \cap X_{2}$	multiples of 6	20
$X_{1} \cap X_{3}$	multiples of 10	12
$X_{1} \cap X_{4}$	multiples of 14	8
$X_{2} \cap X_{3}$	multiples of 15	8
$X_{2} \cap X_{4}$	multiples of 21	5
$X_{3} \cap X_{4}$	multiples of 35	3
$X_{1} \cap X_{2} \cap X_{3}$	multiples of 30	4
$X_{1} \cap X_{2} \cap X_{4}$	multiples of 42	2
$X_{1} \cap X_{3} \cap X_{4}$	multiples of 70	1
$X_{2} \cap X_{3} \cap X_{4}$	multiples of 105	1
$X_{1} \cap X_{2} \cap X_{3} \cap X_{4}$	multiples of 210	0

This leads to the conclusion that the number of integers in the specified range that are multiples of $2,3,5$ or 7 is

$$
\begin{aligned}
\left|X_{1} \cup X_{2} \cup X_{3} \cup X_{4}\right|= & \sum_{I \subseteq\{1, \ldots, 4\}, I \neq \emptyset}(-1)^{|I|+1}\left|\bigcap_{j \in I} X_{j}\right| \\
= & (60+40+24+17)-(10+12+8+8+5+3) \\
& +(4+2+1+1)-0 \\
= & 141-56+8 \\
= & 93
\end{aligned}
$$

(c) Given that $|U|=119$, the result from part (b) means that there are $119-93=26$ members of U that are coprime to $2,3,5$ and 7 . And in light of our result from part (a), any composite number in U has a prime factor less than $\sqrt{120}<\sqrt{121}=11$, so must be divisible by at least one of $2,3,5$ and 7 and thus must belong to one of the X_{j}. Thus all 26 members of $U \backslash X_{1} \cup X_{2} \cup X_{3} \cup X_{4}$ are prime, as are $2,3,5$ and 7 , for a grand total of $26+4=30$ primes in the specified range.

