
MATH20902: Discrete Maths, Solutions to Problem Set 5

(1) If one numbers the vertices as shown below
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the corresponding Laplacians are given by L = D − A where A is the adjacency
matrix and D is a diagonal matrix with Djj = deg(vj). For the graphs above this
leads to

Lleft =


1 −1 0 0
−1 3 −1 −1

0 −1 1 0
0 −1 0 1

 and Lright =


3 −1 −1 −1
−1 3 −1 −1
−1 −1 2 0
−1 −1 0 2

 .
The graph on the left is a tree, so we expect it to contain only a single spanning tree
consisting of the graph itself. And, reassuringly, if we apply Kirchoff’s Matrix-Tree
Theorem the matrix L̂2 formed by deleting the second row and column of Lleft we

find

det(L̂2) = det

 1 0 0
0 1 0
0 0 1

 = 1.

By way of contrast, deleting the first row and column of Lright leads to

det(L̂1) = det

 3 −1 −1
−1 2 0
−1 0 2


= 3× det

[
2 0
0 2

]
− (−1)× det

[
−1 0
−1 2

]
+ (−1)× det

[
−1 2
−1 0

]
= 12− 2− 2

= 8.

The eight spanning trees are illustrated in Figure 1.
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Figure 1: The eight spanning trees for the graph at right in Problem (1).

(2) If one numbers the vertices as shown in the problem

v1

v2

v3

v4

the corresponding Laplacian is L = D − A where A is the adjacency matrix and D
is a diagonal matrix with Djj = degin(vj). For the graph above this is

L = D − A =


1 0 0 0
0 3 0 0
0 0 2 0
0 0 0 2

−


0 1 0 0
0 0 1 1
0 1 0 1
1 1 1 0

 =


1 −1 0 0
0 3 −1 −1
0 −1 2 −1
−1 −1 −1 2

 .
Tutte’s Matrix-Tree Theorem then says that numbers of spanning arborescences
rooted at vj is given by det(L̂j), where L̂j is the matrix formed by deleting the j-th
row and column of L. The results for the Laplacian above are listed in Table 1.

(3) The permutation group S6 has 6! = 720 elements and so it is unlikely that
your choice of four random elements includes any of those listed in Table 2, but the
basic principles are the same: Figure 2 shows the digraphs I used to compute the
cycle decompositions and sets fix(σ), while the values of sgn(σ) come from the rules

• If σ is the identity permutation, then sgn(σ) = 1.

• If σ is a cycle of length l then sgn(σ) = (−1)l+1.

• If σ has a decomposition into k ≥ 2 disjoint cycles whose lengths are l1, . . . , lk
then

sgn(σ) = (−1)L+k where L =
k∑

j=1

lj.
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vj L̂j det(L̂j)

v1

 3 −1 −1
−1 2 −1
−1 −1 2

 3

v2

 1 0 0
0 2 −1
−1 −1 2

 3

vj L̂j det(L̂j)

v3

 1 −1 0
0 3 −1
−1 −1 2

 4

v4

 1 −1 0
0 3 −1
0 −1 2

 5

Table 1: The number of spanning arborescences rooted at each of the vertices in the
digraph from Problem (2).

σ fix(σ) Cycle decomposition sgn(σ)(
1 2 3 4 5 6
3 4 5 2 6 1

)
∅ (1, 3, 5, 6)(2, 4) 1(

1 2 3 4 5 6
3 2 4 6 5 1

)
{2, 5} (1, 3, 4, 6) -1(

1 2 3 4 5 6
5 1 3 4 6 2

)
{3, 4} (1, 5, 6, 2) -1(

1 2 3 4 5 6
5 6 3 4 1 2

)
{3, 4} (1, 5)(2, 6) 1

Table 2: The sets fix(σ), cycle decompositions and signs sgn(σ) for four randomly-
selected members of S6.

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

Figure 2: The digraphs used to compute the cycle decompositions and sets fix(σ)
for the permutations listed in Table 2.
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(4) Applying the Principle of Inclusion/Exclusion to a union of k sets requires the
consideration of 2k intersections, so this problem, with k = 4, is near the limit of
what’s convenient to do by hand.

(a) It’s easiest to prove this by contradiction. Suppose n is a composite number
and that all its prime factors exceed

√
n. As n is composite, it must have two

or more prime factors. We’ll arrange them in ascending order:

n = p1 × p2 × . . . with, by assumption,
√
n < p1 ≤ p2 ≤ . . .

Note that the expression above includes the possibility that p1 = p2.

Then, on the one hand, we know that

n ≥ p1 × p2

because n may have other prime factors in addition to p1 and p2. But on the
other hand, as we have assumed that p1 >

√
n and p2 >

√
n we also have

p1 × p2 > (
√
n)(
√
n) or p1 × p2 > n.

This is a contradiction and the only possible escape is to conclude that n’s
smallest prime factor must satisfy p1 ≤

√
n.

(b) If we take the universal set to be

U = {2, 3, . . . , 120}

and the subsets X1, X2, X3 and X4 to be, respectively, the multiples of 2, 3,
5 and 7 then the cardinalities of the various intersections we need are:

Set Description Cardinality
X1 multiples of 2 60
X2 multiples of 3 40
X3 multiples of 5 24
X4 multiples of 7 17

X1 ∩X2 multiples of 6 20
X1 ∩X3 multiples of 10 12
X1 ∩X4 multiples of 14 8
X2 ∩X3 multiples of 15 8
X2 ∩X4 multiples of 21 5
X3 ∩X4 multiples of 35 3

X1 ∩X2 ∩X3 multiples of 30 4
X1 ∩X2 ∩X4 multiples of 42 2
X1 ∩X3 ∩X4 multiples of 70 1
X2 ∩X3 ∩X4 multiples of 105 1

X1 ∩X2 ∩X3 ∩X4 multiples of 210 0
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This leads to the conclusion that the number of integers in the specified range
that are multiples of 2, 3, 5 or 7 is

|X1 ∪X2 ∪X3 ∪X4| =
∑

I⊆{1,...,4}, I 6=∅

(−1)|I|+1

∣∣∣∣∣⋂
j∈I

Xj

∣∣∣∣∣
= (60 + 40 + 24 + 17)− (10 + 12 + 8 + 8 + 5 + 3)

+ (4 + 2 + 1 + 1)− 0

= 141− 56 + 8

= 93

(c) Given that |U | = 119, the result from part (b) means that there are 119− 93 = 26
members of U that are coprime to 2, 3, 5 and 7. And in light of our re-
sult from part (a), any composite number in U has a prime factor less than√

120 <
√

121 = 11, so must be divisible by at least one of 2, 3, 5 and 7 and
thus must belong to one of the Xj. Thus all 26 members of U\X1∪X2∪X3∪X4

are prime, as are 2, 3, 5 and 7, for a grand total of 26 + 4 = 30 primes in the
specified range.
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